
MATLAB®

Data Import and Export

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Data Import and Export

© COPYRIGHT 2009–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2009 Online only New for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for MATLAB 7.11 (Release 2010b)
April 2011 Online only Revised for MATLAB 7.12 (Release 2011a)
September 2011 Online only Revised for MATLAB 7.13 (Release 2011b)
March 2012 Online only Revised for MATLAB 7.14 (Release 2012a)
September 2012 Online only Revised for MATLAB 8.0 (Release 2012b)
March 2013 Online only Revised for MATLAB 8.1 (Release 2013a)

Contents

File Opening, Loading, and Saving

1
Supported File Formats . 1-2

Recommended Methods for Importing Data 1-7
Tools that Import Multiple File Formats 1-7
Importing Specific File Formats . 1-8
Importing Data in Other Formats . 1-8
Finding Files . 1-8
Tips for Using the Import Wizard . 1-9

Process a Sequence of Files . 1-13

View the Contents of a MAT-File . 1-14

Load Parts of Variables from MAT-Files 1-15
Load Using the matfile Function . 1-15
Avoid Inadvertently Loading Entire Variables 1-16
Partial Loading Requires Version 7.3 MAT-Files 1-17

Save Parts of Variables to MAT-Files 1-18
Save Using the matfile Function . 1-18
Partial Saving Requires Version 7.3 MAT-Files 1-20

Save Structure Fields as Separate Variables 1-21

MAT-File Versions . 1-22
Default Version . 1-22
Overriding the Default MAT-File Version 1-22
Speeding Up Save and Load Operations 1-23

Troubleshooting: Loading Variables within a
Function . 1-24

v

Creating Temporary Files . 1-25

Text Files

2
Ways to Import Text Files . 2-2

Select Text File Data Using Import Tool 2-4
Select Data Interactively . 2-4
Import Data from Multiple Text Files 2-7

Import Formatted Dates and Times from Text Files . . . 2-8

Import Numeric Data from Text Files 2-10
Import Text Files with Numeric Fields 2-10
Select a Range of Numeric Data . 2-11

Import Numeric Data and Header Text from Text
Files . 2-12

Import Mixed Text and Numeric Data from Text
Files . 2-14
Open the File . 2-14
Describe Your Data . 2-14
Import into a Cell Array . 2-14

Import Large Text Files . 2-16

Import Data from a Nonrectangular Text File 2-17

Ways to Write to Text Files . 2-19

Write to Delimited Data Files . 2-20
Overview . 2-20
Exporting a Numeric Array to an ASCII File Using save . . 2-20

vi Contents

Exporting a Numeric Array to an ASCII File Using
dlmwrite . 2-21

Exporting a Cell Array to a Text File 2-22

Write to a Diary File . 2-24

Spreadsheets

3
Ways to Import Spreadsheets . 3-2

Select Spreadsheet Data Using Import Tool 3-3
Select Data Interactively . 3-3
Import Data from Multiple Spreadsheets 3-4

Import a Worksheet or Range with xlsread 3-6
Reading from a Spreadsheet . 3-6
Getting Information about a Spreadsheet 3-7

Import All Worksheets in a File with importdata 3-8

System Requirements for Importing Spreadsheets 3-10
Importing Spreadsheets with Excel for Windows 3-10
Importing Spreadsheets Without Excel for Windows 3-10

When to Convert Dates from Excel Files 3-11
MATLAB and Excel Dates . 3-11
Example — Importing an Excel File with Numeric
Dates . 3-11

Export to Excel Spreadsheets . 3-13
Writing to a Spreadsheet File . 3-13
Adding a New Worksheet . 3-13
File Formats that xlswrite Supports 3-14
Converting Dates . 3-14
Formatting Cells in Excel Files . 3-15

vii

Low-Level File I/O

4
Import Text Data Files with Low-Level I/O 4-2
Overview . 4-2
Reading Data in a Formatted Pattern 4-3
Reading Data Line-by-Line . 4-6
Testing for End of File (EOF) . 4-7
Opening Files with Different Character Encodings 4-9

Import Binary Data with Low-Level I/O 4-11
Low-Level Functions for Importing Data 4-11
Reading Binary Data in a File . 4-12
Reading Portions of a File . 4-14
Reading Files Created on Other Systems 4-17
Opening Files with Different Character Encodings 4-18

Export to Text Data Files with Low-Level I/O 4-19
Writing to Text Files . 4-19
Appending or Overwriting Existing Files 4-22
Opening Files with Different Character Encodings 4-25

Export Binary Data with Low-Level I/O 4-26
Low-Level Functions for Exporting Data 4-26
Writing Binary Data to a File . 4-27
Overwriting or Appending to an Existing File 4-27
Creating a File for Use on a Different System 4-29
Opening Files with Different Character Encodings 4-30
Writing and Reading Complex Numbers 4-31

Images

5
Importing Images . 5-2
Getting Information about Image Files 5-2
Reading Image Data and Metadata from TIFF Files 5-3

Exporting to Images . 5-6

viii Contents

Exporting Image Data and Metadata to TIFF Files 5-6

Scientific Data

6
Importing Common Data File Format (CDF) Files 6-2
Overview . 6-2
High-Level CDF Import Functions 6-2
Using the CDF Library Low-Level Functions to Import
Data . 6-6

Exporting to Common Data File Format (CDF) Files . . 6-10

Importing Network Common Data Form (NetCDF) Files
and OPeNDAP Data . 6-12
Overview . 6-12
Using the MATLAB High-Level NetCDF Functions to
Import Data . 6-13

Using the MATLAB Low-Level NetCDF Functions to
Import Data . 6-15

Troubleshooting OPeNDAP Connections 6-20

Exporting to Network Common Data Form (NetCDF)
Files . 6-21
Overview . 6-21
Using the NetCDF High-Level Functions to Export
Data . 6-21

Using the NetCDF Low-Level Functions to Export Data . . 6-26

Importing Flexible Image Transport System (FITS)
Files . 6-30

Importing Hierarchical Data Format (HDF5) Files 6-32
Overview . 6-32
Using the High-Level HDF5 Functions to Import Data . . . 6-32
Using the Low-Level HDF5 Functions to Import Data 6-39

ix

Exporting to Hierarchical Data Format (HDF5)
Files . 6-40
Overview . 6-40
Using the MATLAB High-Level HDF5 Functions to Export
Data . 6-40

Using the MATLAB Low-Level HDF5 Functions to Export
Data . 6-41

Importing Hierarchical Data Format (HDF4) Files 6-52
Overview . 6-52
Using the MATLAB HDF4 High-Level Functions 6-52
Using the HDF4 Low-Level Functions 6-56
Using the HDF Import Tool . 6-63
Using the HDF Import Tool Subsetting Options 6-68

Exporting to Hierarchical Data Format (HDF4)
Files . 6-82
Overview . 6-82
Mapping HDF4 to MATLAB Syntax 6-83
Step 1: Creating an HDF4 File . 6-84
Step 2: Creating an HDF4 Data Set 6-84
Step 3: Writing MATLAB Data to an HDF4 File 6-86
Step 4: Writing Metadata to an HDF4 File 6-88
Step 5: Closing HDF4 Data Sets . 6-90
Step 6: Closing an HDF4 File . 6-90
Using the MATLAB HDF4 Utility API 6-90

Audio and Video

7
Read and Get Information About Audio Files 7-2

Record and Play Audio . 7-3
Record Audio . 7-3
Play Audio . 7-4
Recording or Playing Audio within a Function 7-5

Get Information about Video Files 7-7

x Contents

Read Video Files . 7-8
Importing Video Data from a File . 7-8
Processing Frames of a Video File . 7-8
Reading Variable Frame Rate Video 7-9
Supported Video File Formats . 7-10

Convert Between Image Sequences and Video 7-12

Export to Audio and Video . 7-17
Exporting to Audio Files . 7-17
Exporting Video to AVI Files . 7-17

Characteristics of Audio Files . 7-19

XML Documents

8
Importing XML Documents . 8-2
What Is an XML Document Object Model (DOM)? 8-2
Example — Finding Text in an XML File 8-3

Exporting to XML Documents . 8-6
Creating an XML File . 8-6
Updating an Existing XML File . 8-8

Memory-Mapping Data Files

9
Overview of Memory-Mapping . 9-2
What Is Memory-Mapping? . 9-2
Benefits of Memory-Mapping . 9-2
When to Use Memory-Mapping . 9-4
Maximum Size of a Memory Map . 9-5
Byte Ordering . 9-6

xi

The memmapfile Class . 9-7
Setting Properties . 9-7
Viewing Properties . 9-8

Constructing a memmapfile Object 9-10
How to Run Examples in This Section 9-10
Constructing the Object with Default Property Values . . . 9-11
Changing Property Values . 9-11
Selecting the File to Map . 9-13
Setting the Start of the Mapped Region 9-14
Identifying the Contents of the Mapped Region 9-14
Mapping of the Example File . 9-19
Repeating a Format Scheme . 9-21
Setting the Type of Access . 9-22

Reading a Mapped File . 9-24
Introduction . 9-24
Improving Performance . 9-24
Example 1 — Reading a Single Data Type 9-25
Example 2 — Formatting File Data as a Matrix 9-26
Example 3 — Reading Multiple Data Types 9-27
Example 4 — Modifying Map Parameters 9-28

Writing to a Mapped File . 9-30
Example — Writing to a Mapped File 9-30
Dimensions of the Data Field . 9-31
Writing Matrices to a Mapped File 9-33
Selecting Appropriate Data Types . 9-35
Working with Copies of the Mapped Data 9-36

Deleting a Memory Map . 9-38
Ways to Delete a Memory Map . 9-38
The Effect of Shared Data Copies On Performance 9-38

Share Memory Between Applications 9-39
Introduction . 9-39
The send Function . 9-39
The answer Function . 9-41
Running the Example . 9-42

xii Contents

Internet File Access

10
Downloading Web Content and Files 10-2
Example — Using the urlread Function 10-2
Example — Using the urlwrite Function 10-3

Creating and Decompressing Zip Archives 10-4
Example — Using the zip Function 10-4

Sending Email . 10-5
Example — Using the sendmail Function 10-6

Performing FTP File Operations . 10-8
Example — Retrieving a File from an FTP Server 10-8

Display Hyperlinks in the Command Window 10-10
Creating Hyperlinks to Web Pages 10-10
Transferring Files Using FTP . 10-10

Index

xiii

xiv Contents

1

File Opening, Loading, and
Saving

• “Supported File Formats” on page 1-2

• “Recommended Methods for Importing Data” on page 1-7

• “Process a Sequence of Files” on page 1-13

• “View the Contents of a MAT-File” on page 1-14

• “Load Parts of Variables from MAT-Files” on page 1-15

• “Save Parts of Variables to MAT-Files” on page 1-18

• “Save Structure Fields as Separate Variables” on page 1-21

• “MAT-File Versions” on page 1-22

• “Troubleshooting: Loading Variables within a Function” on page 1-24

• “Creating Temporary Files” on page 1-25

1 File Opening, Loading, and Saving

Supported File Formats
The following table shows the file formats that you can import and export
from the MATLAB® application.

In addition to the functions in the table, you also can use the importdata
function, or import these file formats interactively, with the following
exceptions:

• importdata and interactive import do not support Motion JPEG 2000 and
platform-specific video.

• importdata and interactive import do not support H5 and netCDF files.

• The only audio file formats supported by importdata and interactive
import are AU, SND, and WAV files.

• importdata does not support HDF files.

File Content Extension Description
Import
Function

Export
Function

MATLAB
formatted data

MAT Saved MATLAB
workspace

load save

White-space delimited
numbers

load save -ascii

Delimited numbers dlmread dlmwrite

Text any

Delimited numbers, or
a mix of strings and
numbers

textscan

1-2

Supported File Formats

File Content Extension Description
Import
Function

Export
Function

XLS
XLSX
XLSM
XLSB

Microsoft® Excel®

spreadsheet
xlsread xlswrite

XLTM
XLTX

Microsoft Excel
spreadsheet

xlsread none

Spreadsheet
(Windows® with
COM interface)

ODS OpenDocument™
Spreadsheet, supported
on Windows systems
with Excel 2010 or later
(OpenDocument is a
trademark of OASIS™,
the open standards
consortium)

xlsread none

Spreadsheet
(Windows without
COM interface,
Mac, and Linux®)

XLS
XLSX
XLSM
XLTM
XLTX

Microsoft Excel
spreadsheet

xlsread none

Extensible Markup
Language

XML XML-formatted text xmlread xmlwrite

Data Acquisition
Toolbox™ file

DAQ Data Acquisition Toolbox daqread none

1-3

1 File Opening, Loading, and Saving

File Content Extension Description
Import
Function

Export
Function

CDF Common Data Format See cdflib See cdflib

FITS Flexible Image
Transport System

fitsread none

HDF Hierarchical Data
Format, version 4, or
HDF-EOS v. 2

See hdf See hdf

H5 HDF or HDF-EOS,
version 5

See “HDF5
Files”

See “HDF5
Files”

Scientific data

NC Network Common Data
Form (netCDF)

See netcdf See netcdf

BMP Windows Bitmap

GIF Graphics Interchange
Format

HDF Hierarchical Data
Format

JPEG
JPG

Joint Photographic
Experts Group

JP2
JPF
JPX
J2C
J2K

JPEG 2000

PBM Portable Bitmap

PCX Paintbrush

PGM Portable Graymap

PNG Portable Network
Graphics

PNM Portable Any Map

PPM Portable Pixmap

RAS Sun™ Raster

imread imwriteImage

1-4

Supported File Formats

File Content Extension Description
Import
Function

Export
Function

TIFF
TIF

Tagged Image File
Format

XWD X Window Dump

CUR Windows Cursor
resources

FITS
FTS

Flexible Image
Transport System

ICO Windows Icon resources

imread none

AU
SND

NeXT/Sun sound

FLAC Free Lossless Audio
Codec

OGG Ogg Vorbis

Audio (all
platforms)

WAV Microsoft WAVE sound

audioread audiowrite

M4A
MP4

MPEG-4 audioread audiowriteAudio (Windows)

any Formats supported
by Microsoft Media
Foundation

audioread none

Audio (Mac) M4A
MP4

MPEG-4 audioread audiowrite

Audio (Linux) any Formats supported by
GStreamer

audioread none

AVI Audio Video InterleaveVideo (all
platforms) MJ2 Motion JPEG 2000

VideoReader VideoWriter

1-5

1 File Opening, Loading, and Saving

File Content Extension Description
Import
Function

Export
Function

MPG MPEG-1

ASF
ASX
WMV

Windows Media®
Video (Windows)

any Formats supported by
Microsoft DirectShow®

VideoReader none

MP4
M4V

MPEG-4 VideoReader VideoWriter

MOV QuickTime

Video (Windows 7)

any Formats supported
by Microsoft Media
Foundation

VideoReader none

MP4
M4V

MPEG-4 VideoReader VideoWriter

MPG MPEG-1

MOV QuickTime

Video (Mac)

any Formats supported by
QuickTime, including
.3gp, .3g2, and .dv

VideoReader none

Video (Linux) any Formats supported
by your installed
GStreamer plug-ins,
including .ogg

VideoReader none

1-6

Recommended Methods for Importing Data

Recommended Methods for Importing Data

In this section...

“Tools that Import Multiple File Formats” on page 1-7

“Importing Specific File Formats” on page 1-8

“Importing Data in Other Formats” on page 1-8

“Finding Files” on page 1-8

“Tips for Using the Import Wizard” on page 1-9

Caution When you import data into the MATLAB workspace, the new
variables you create overwrite any existing variables in the workspace that
have the same name.

Tools that Import Multiple File Formats
You can import data into MATLAB from a disk file or the system clipboard
interactively.

To import data from a file, do one of the following:

• On the Home tab, in the Variable section, select Import Data .

• Double-click a file name in the Current Folder browser.

• Call uiimport.

To import data from the clipboard, do one of the following:

• On the Workspace browser title bar, click , and then select Paste.

• Call uiimport.

To import without invoking a graphical user interface, the easiest option
is to use the importdata function.

For a complete list of the formats you can import interactively or with
importdata, see “Supported File Formats” on page 1-2.

1-7

1 File Opening, Loading, and Saving

Importing Specific File Formats
MATLAB includes functions tailored to import specific file formats.

Consider using format-specific functions instead of importing data
interactively when you want to import only a portion of a file. Many of the
format-specific functions provide options for selecting ranges or portions of
data. Alternatively, for binary data files, consider memory-mapping.

Some format-specific functions allow you to request multiple optional outputs.
This option is not available when you import interactively.

For a complete list of the format-specific functions, see “Supported File
Formats” on page 1-2.

Importing Data in Other Formats
If the Import Wizard, importdata, and format-specific functions cannot read
your data, use low-level I/O functions such as fscanf or fread. Low-level
functions allow the most control over reading from a file, but require detailed
knowledge of the structure of your data. For more information, see:

• “Import Text Data Files with Low-Level I/O” on page 4-2

• “Import Binary Data with Low-Level I/O” on page 4-11

Alternatively, MATLAB toolboxes perform specialized import operations.
For example, use Database Toolbox™ software for importing data from
relational databases. Refer to the documentation on specific toolboxes to see
the available import features.

Finding Files
To find a specific file on the MATLAB search path, use the which function. If
the file is not in the current folder, include the full or partial path with the
file name in calls to import functions.

For example, to locate and load myfile.mat:

fullname = which('myfile.mat');
load(fullname);

1-8

Recommended Methods for Importing Data

For more information, see:

• “Finding Files and Folders”

• “Path Names in MATLAB”

• “What Is the MATLAB Search Path?”

Tips for Using the Import Wizard
Start the Import Wizard by selecting Import Data or calling uiimport.

The Import Wizard provides the following options for reading, images, audio,
or video data:

• “Viewing the Contents of a File” on page 1-9

• “Specifying Variables” on page 1-10

• “Generating Reusable MATLAB Code” on page 1-12

Note For information on importing text files, see “Select Text File Data
Using Import Tool” on page 2-4. For information on importing spreadsheets,
see “Select Spreadsheet Data Using Import Tool” on page 3-3. For information
on importing HDF4 files, see “Using the HDF Import Tool” on page 6-63.

Viewing the Contents of a File
To view images or video, or to listen to audio, click the Back button on the
first window that the Import Wizard displays.

1-9

1 File Opening, Loading, and Saving

The right pane of the new window includes a preview tab. Click the button in
the preview tab to show an image or to play audio or video.

Specifying Variables
The Import Wizard generates default variable names based on the format and
content of your data. You can change the variables in any of the following
ways:

• “Renaming or Deselecting Variables” on page 1-11

• “Importing to a Structure Array” on page 1-11

The default variable name for data imported from the system clipboard is
A_pastespecial.

If the Import Wizard detects a single variable in a file, the default variable
name is the file name. Otherwise, the Import Wizard uses default variable
names that correspond to the output fields of the importdata function. For

1-10

Recommended Methods for Importing Data

more information on the output fields, see the importdata function reference
page.

Renaming or Deselecting Variables. To override the default variable
name, select the name and type a new one.

To avoid importing a particular variable, clear the check box in the Import
column.

Importing to a Structure Array. To import data into fields of a structure
array rather than as individual variables, start the Import Wizard by calling
uiimport with an output argument. For example, the sample file durer.mat
contains three variables: X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')

and click the Finish button, the Import Wizard returns a scalar structure
with three fields:

durerStruct =
X: [648x509 double]

map: [128x3 double]
caption: [2x28 char]

To access a particular field, use dot notation. For example, view the caption
field:

disp(durerStruct.caption)

1-11

1 File Opening, Loading, and Saving

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Access Data in a Structure Array”.

Generating Reusable MATLAB Code
To create a function that reads similar files without restarting the Import
Wizard, select the Generate MATLAB code check box. When you click
Finish to complete the initial import operation, MATLAB opens an Editor
window that contains an unsaved function. The default function name is
importfile.m or importfileN.m, where N is an integer.

The function in the generated code includes the following features:

• For text files, if you request vectors from rows or columns, the generated
code also returns vectors.

• When importing from files, the function includes an input argument for the
name of the file to import, fileToRead1.

• When importing into a structure array, the function includes an output
argument for the name of the structure, newData1.

However, the generated code has the following limitations:

• If you rename or deselect any variables in the Import Wizard, the generated
code does not reflect those changes.

• If you do not import into a structure array, the generated function creates
variables in the base workspace. If you plan to call the generated function
from within your own function, your function cannot access these variables.
To allow your function to access the data, start the Import Wizard by
calling uiimport with an output argument. Call the generated function
with an output argument to create a structure array in the workspace
of your function.

MATLAB does not automatically save the function. To save the file, select
Save . For best results, use the function name with a .m extension for
the file name.

1-12

Process a Sequence of Files

Process a Sequence of Files
To import or export multiple files, create a control loop to process one file at a
time. When constructing the loop:

• To build sequential file names, use sprintf.

• To find files that match a pattern, use dir.

• Use function syntax to pass the name of the file to the import or export
function. (For more information, see “Command vs. Function Syntax”.)

For example, to read files named file1.txt through file20.txt with
importdata:

numfiles = 20;
mydata = cell(1, numfiles);

for k = 1:numfiles
myfilename = sprintf('file%d.txt', k);
mydata{k} = importdata(myfilename);

end

To read all files that match *.jpg with imread:

jpegFiles = dir('*.jpg');
numfiles = length(jpegFiles);
mydata = cell(1, numfiles);

for k = 1:numfiles
mydata{k} = imread(jpegFiles(k).name);

end

1-13

1 File Opening, Loading, and Saving

View the Contents of a MAT-File
MAT-files are binary MATLAB format files that store workspace variables.

To see the variables in a MAT-file before loading the file into your workspace,
click the file name in the Current Folder browser. Information about the
variables appears in the Details Panel.

Alternatively, use the command whos -file filename. This function returns
the name, dimensions, size, and class of all variables in the specified MAT-file.

For example, view the contents of the example file durer.mat:

whos -file durer.mat

MATLAB returns:

Name Size Bytes Class Attributes

X 648x509 2638656 double
caption 2x28 112 char
map 128x3 3072 double

The byte counts represent the number of bytes that the data occupies when
loaded into the MATLAB workspace. Compressed data uses fewer bytes in
a file than in the workspace. In Version 7 or higher MAT-files, MATLAB
compresses data. For more information, see “MAT-File Versions” on page 1-22.

1-14

Load Parts of Variables from MAT-Files

Load Parts of Variables from MAT-Files

In this section...

“Load Using the matfile Function” on page 1-15

“Avoid Inadvertently Loading Entire Variables” on page 1-16

“Partial Loading Requires Version 7.3 MAT-Files” on page 1-17

Load Using the matfile Function
This example shows how to load part of a variable from an existing MAT-file.
To run the code in this example, create a Version 7.3 MAT-file with two
variables.

A = rand(5);
B = magic(10);
save example.mat A B -v7.3;
clear A B

Load the first column of B from example.mat into variable firstColB.

example = matfile('example.mat')
firstColB = example.B(:,1);

The matfile function creates a matlab.io.MatFile object that corresponds
to a MAT-file:

matlab.io.MatFile

Properties:
Properties.Source: C:\Documents\MATLAB\example.mat

Properties.Writable: false
A: [5x5 double]
B: [10x10 double]

When you index into objects associated with Version 7.3 MAT-files, MATLAB
loads only the part of the variable that you specify.

The primary advantage of matfile over the load function is that you can
process parts of very large data sets that are otherwise too large to fit in

1-15

1 File Opening, Loading, and Saving

memory. When working with these large variables, the best practice is to
read and write as much data into memory as possible at a time. Otherwise,
repeated file access negatively impacts the performance of your code.

For example, suppose a variable in your file contains many rows and columns,
and loading a single row requires most of the available memory. To calculate
the mean of the entire data set, calculate the mean of each row, and then
find the overall mean.

example = matfile('example.mat');
[nrows, ncols] = size(example,'B');

avgs = zeros(1, nrows);
for idx = 1:nrows

avgs(idx) = mean(example.B(idx,:));
end
overallAvg = mean(avgs);

By default, matfile only allows loading from existing MAT-files. To enable
saving, call matfile with the Writable parameter,

example = matfile('example.mat','Writable',true);

or construct the object and set Properties.Writable in separate steps:

example = matfile('example.mat');
example.Properties.Writable = true;

Avoid Inadvertently Loading Entire Variables
When you do not know the size of a large variable in a MAT-file, and want to
load parts of that variable at a time, do not use the end keyword. Rather, call
the size method for matlab.io.MatFile objects. For example, this code

[nrows,ncols] = size(example,'B');
lastColB = example.B(:,ncols);

requires less memory than

lastColB = example.B(:,end);

1-16

Load Parts of Variables from MAT-Files

which temporarily loads the entire contents of B. For very large variables,
loading takes a long time or generates Out of Memory errors.

Similarly, any time you refer to a variable with syntax of the form
mfObj.varName, such as example.B, MATLAB temporarily loads the entire
variable into memory. Therefore, make sure to call the size method for
matlab.io.MatFile objects with syntax such as

[nrows,ncols] = size(example,'B');

rather than passing the entire contents of example.B to the size function,

[nrows,ncols] = size(example.B);

The difference in syntax is subtle, but significant.

Partial Loading Requires Version 7.3 MAT-Files
Any load or save operation that uses a matlab.io.MatFile object associated
with a Version 7 or earlier MAT-file temporarily loads the entire variable
into memory.

The matfile function creates files in Version 7.3 format. For example, this
code

newfile = matfile('newfile.mat');

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert
existing MAT-files to Version 7.3 by calling the save function with the -v7.3
option, such as

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format,
access the Environment section on the Home tab, and click
Preferences > General > MAT-Files.

1-17

1 File Opening, Loading, and Saving

Save Parts of Variables to MAT-Files

In this section...

“Save Using the matfile Function” on page 1-18

“Partial Saving Requires Version 7.3 MAT-Files” on page 1-20

Save Using the matfile Function
This example shows how to change and save part of a variable in a MAT-file.
To run the code in this example, create a Version 7.3 MAT-file with two
variables.

A = rand(5);
B = ones(4,8);
save example.mat A B -v7.3;
clear A B

Update the values in the first row of variable B in example.mat.

example = matfile('example.mat','Writable',true)
example.B(1,:) = 2 * example.B(1,:);

The matfile function creates a matlab.io.MatFile object that corresponds
to a MAT-file:

matlab.io.MatFile

Properties:
Properties.Source: C:\Documents\MATLAB\example.mat

Properties.Writable: true
A: [5x5 double]
B: [4x8 double]

When you index into objects associated with Version 7.3 MAT-files, MATLAB
loads and saves only the part of the variable that you specify. This partial
loading or saving requires less memory than load or save commands, which
always operate on entire variables.

1-18

Save Parts of Variables to MAT-Files

For very large files, the best practice is to read and write as much data into
memory as possible at a time. Otherwise, repeated file access negatively
impacts the performance of your code. For example, suppose your file contains
many rows and columns, and loading a single row requires most of the
available memory. Rather than updating one element at a time, update each
row.

example = matfile('example.mat','Writable',true);

[nrowsB,ncolsB] = size(example,'B');
for row = 1:nrowsB

example.B(row,:) = row * example.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable
at a time, such as

example = matfile('example.mat','Writable',true);
example.B = 10 * example.B;

Alternatively, update a variable by calling the save function with the -append
option. The -append option requests that the save function replace only the
specified variable, B, and leave other variables in the file intact:

load('example.mat','B');
B(1,:) = 2 * B(1,:);
save('example.mat','-append','B');

This method always requires that you load and save the entire variable.

Use either method to add a variable to the file. For example, this code

example = matfile('example.mat','Writable',true);
example.C = magic(8);

performs the same save operation as

C = magic(8);
save('example.mat','-append','C');
clear C

1-19

1 File Opening, Loading, and Saving

Partial Saving Requires Version 7.3 MAT-Files
Any load or save operation that uses a matlab.io.MatFile object associated
with a Version 7 or earlier MAT-file temporarily loads the entire variable
into memory.

The matfile function creates files in Version 7.3 format. For example, this
code

newfile = matfile('newfile.mat');

creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert
existing MAT-files to Version 7.3 by calling the save function with the -v7.3
option, such as

load('durer.mat');
save('mycopy_durer.mat','-v7.3');

To change your preferences to save new files in Version 7.3 format,
access the Environment section on the Home tab, and click
Preferences > General > MAT-Files.

1-20

Save Structure Fields as Separate Variables

Save Structure Fields as Separate Variables
If any of the variables in your current workspace are structure arrays, the
default behavior of the save function is to store the entire structure. To store
fields of a scalar structure as individual variables, use the -struct option
to the save function.

For example, consider structure S:

S.a = 12.7; S.b = {'abc', [4 5; 6 7]}; S.c = 'Hello!';

Save the entire structure to newstruct.mat with the usual syntax:

save('newstruct.mat', 'S')

The file contains the variable S:

Name Size Bytes Class
S 1x1 550 struct

Alternatively, save the fields individually with the -struct option:

save('newstruct.mat', '-struct', 'S')

The file contains variables a, b, and c, but not S:

Name Size Bytes Class
a 1x1 8 double
b 1x2 158 cell
c 1x6 12 char

To save only selected fields, such as a and c:

save('newstruct.mat', '-struct', 'S', 'a', 'c')

1-21

1 File Opening, Loading, and Saving

MAT-File Versions

In this section...

“Default Version” on page 1-22

“Overriding the Default MAT-File Version” on page 1-22

“Speeding Up Save and Load Operations” on page 1-23

Default Version
By default, all save operations except new file creation with the matfile
function create Version 7 MAT-files. Override the default to:

• Allow access to the file using earlier versions of MATLAB.

• Take advantage of Version 7.3 MAT-file features: data items larger than 2
GB on 64-bit systems, and saving or loading parts of variables.

Note Version 7.3 MAT-files use an HDF5 based format that requires some
overhead storage to describe the contents of the file. For complex nested
cell or structure arrays, Version 7.3 MAT-files are sometimes larger than
Version 7 MAT-files.

• Reduce the time required to load and save some files by storing
uncompressed data. For more information, see “Speeding Up Save and
Load Operations” on page 1-23.

Overriding the Default MAT-File Version
To identify or change the default version, access the Environment
section on the Home tab, and click Preferences > General > MAT-Files.
Alternatively, specify the version as an option to the save function.

For example, to create a MAT-file named myfile.mat that you can load with
MATLAB Version 6, use the following command:

save('myfile.mat', '-v6')

1-22

MAT-File Versions

The possible version options for the save function include -v4, -v6, -v7, and
-v7.3. For more information about the differences between previous and
current MAT-file versions, see the save function reference page.

Speeding Up Save and Load Operations
Beginning with Version 7, MATLAB compresses data when writing to
MAT-files to save storage space. Data compression and decompression slow
down all save operations and some load operations. In most cases, the
reduction in file size is worth the additional time spent.

In fact, loading compressed data is sometimes faster than loading
uncompressed data. For example, consider a block of data in a numeric array
saved to both a 10 MB compressed file and a 100 MB uncompressed file.
Loading the first 10 MB takes the same amount of time for each file. Loading
the remaining 90 MB from the uncompressed file takes nine times as long as
loading the first 10 MB. Completing the load of the compressed file requires
only the relatively short time to decompress the data.

However, the benefits of data compression are negligible in the following
cases:

• The amount of data in each item is small relative to the complexity of its
container. For example, simple numeric arrays take less time to compress
and uncompress than cell or structure arrays of the same size. Compressing
arrays that result in an uncompressed file size of less than 3MB offers
limited benefit, unless you are transferring data over a network.

• The data is random, with no repeated patterns or consistent values.

Version 6 MAT-files do not use compression. To create a Version 6 MAT-file,
use the methods described in “Overriding the Default MAT-File Version”
on page 1-22.

1-23

1 File Opening, Loading, and Saving

Troubleshooting: Loading Variables within a Function
If you define a function that loads data from a MAT-file, and find that
MATLAB does not return the expected results, check whether any variables
in the MAT-file share the same name as a MATLAB function. Common
variable names that conflict with function names include i, j, mode, char,
size, and path.

For example, consider a MAT-file with variables height, width, and length.
If you load these variables using a function such as findVolume,

function vol = findVolume(myfile)
load(myfile);
vol = height * width * length;

MATLAB interprets the reference to length as a call to the MATLAB length
function, and returns an error:

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of the
following approaches:

• Load into a structure array. For example, define the findVolume function
as follows:

function vol = findVolume(myfile)
dims = load(myfile);
vol = dims.height * dims.width * dims.length;

• Explicitly include the names of variables in the call to the load function.

• Initialize variables (e.g., assign to an empty matrix or empty string) within
the function before calling load.

To determine whether a particular name is associated with a MATLAB
function, use the exist function.

1-24

Creating Temporary Files

Creating Temporary Files
The tempdir and tempname functions assist in locating temporary data on
your system.

Function Purpose

tempdir Get temporary folder name.

tempname Get temporary filename.

Use these functions to create temporary files. Some systems delete temporary
files every time you reboot the system. On other systems, designating a file as
temporary can mean only that the file is not backed up.

The tempdir function returns the name of the folder that has been designated
to hold temporary files on your system. For example, issuing tempdir on The
Open Group UNIX® systems returns the /tmp folder.

MATLAB also provides a tempname function that returns a filename in
the temporary folder. The returned filename is a suitable destination for
temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fid = fopen(tempname, 'w');

Note The filename that tempname generates is not guaranteed to be unique;
however, it is likely to be so.

1-25

1 File Opening, Loading, and Saving

1-26

2

Text Files

• “Ways to Import Text Files” on page 2-2

• “Select Text File Data Using Import Tool” on page 2-4

• “Import Formatted Dates and Times from Text Files” on page 2-8

• “Import Numeric Data from Text Files” on page 2-10

• “Import Numeric Data and Header Text from Text Files” on page 2-12

• “Import Mixed Text and Numeric Data from Text Files” on page 2-14

• “Import Large Text Files” on page 2-16

• “Import Data from a Nonrectangular Text File” on page 2-17

• “Ways to Write to Text Files” on page 2-19

• “Write to Delimited Data Files” on page 2-20

• “Write to a Diary File” on page 2-24

2 Text Files

Ways to Import Text Files
You can import text files into MATLAB both interactively as well as
programmatically.

To import data interactively, use the Import Tool. You can generate code to
repeat the operation on multiple similar files. The Import Tool supports text
files, including those with the extensions .txt, .dat, .csv, .asc, .tab, and
.dlm. These text files can be nonrectangular, and can have row and column
headers. Data in these files can be a combination of numeric and nonnumeric
text, and can be delimited by one or more characters.

To import data from text files programmatically, use an import function. Most
of the import functions for text files require that all data fields in your file are
numeric, and that each row of data has the same number of columns. Some
import functions support header text, as shown in the following figure, and
some functions allow you to specify a range of data to import.

This table compares the primary import options for text files.

Import Option Supports
Nonnumeric
Data?

Supports
Range
Selection?

For More
Information,
See...

Import Tool Yes Yes “Select Text
File Data Using
Import Tool” on
page 2-4

load No No load function
reference page

2-2

Ways to Import Text Files

Import Option Supports
Nonnumeric
Data?

Supports
Range
Selection?

For More
Information,
See...

dlmread No Yes dlmread function
reference page

importdata Headers only No “Import Numeric
Data and Header
Text from Text
Files” on page
2-12

textscan Yes Yes “Import Mixed
Text and
Numeric Data
from Text Files”
on page 2-14.

For information on importing files with more complex formats, see “Import
Text Data Files with Low-Level I/O” on page 4-2.

2-3

2 Text Files

Select Text File Data Using Import Tool

In this section...

“Select Data Interactively” on page 2-4

“Import Data from Multiple Text Files” on page 2-7

Select Data Interactively
This example shows how to import data from a text file with column
headers and numeric data using the Import Tool. The file in this example,
grades.txt, contains the following data (to create the file, use any text
editor, and copy and paste):

John Ann Mark Rob
88.4 91.5 89.2 77.3
83.2 88.0 67.8 91.0
77.8 76.3 92.5
92.1 96.4 81.2 84.6

On the Home tab, in the Variable section, click Import Data .
Alternatively, right-click the name of the file in the Current Folder browser
and select Import Data. The Import tab opens.

2-4

Select Text File Data Using Import Tool

The Import Tool recognizes that grades.txt is a fixed width file. In the
Imported Data section, select how you want the data to be imported, for
instance, as column vectors or as a single matrix.

Double-click on a variable name to rename it.

2-5

2 Text Files

You also can use the Variable Names Row box in the Selection section to
select the row in the text file that the Import Tool uses for variable names.

The Import Tool highlights unimportable cells in red. Other highlight colors
correspond to proposed rules to make the data fit into a numeric array. You
can add, remove, reorder, or edit rules, such as changing the replacement
value from NaN to another value.

All rules apply to the imported data only, and do not change the data in the
file. You must specify rules any time the range includes nonnumeric data and
you are importing into a matrix or numeric column vectors.

You can see how your data will be imported when you place the cursor over
individual cells.

When you click the Import Selection button , the Import Tool creates
variables in your workspace.

For more information on interacting with the Import Tool, watch this video.

2-6

Select Text File Data Using Import Tool

Import Data from Multiple Text Files
This example shows how to perform the same import operation on multiple
files using the Import Tool. You can generate code from the Import Tool,
making it easier to repeat the operation. The Import Tool generates a
program script that you can edit and run to import the files, or a function
that you can call for each file.

Suppose you have a set of text files in the current folder named myfile01.txt
through myfile25.txt, and you want to import the data from each file,
starting from the second row. Generate code to import the entire set of files as
follows:

1 Open one of the files in the Import Tool.

2 Click Import Selection , and then select Generate Function. The
Import Tool generates code similar to the following excerpt, and opens
the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.
...

3 Save the function.

4 In a separate program file or at the command line, create a for loop to
import data from each text file into a cell array named myData:

numFiles = 25;
startRow = 2;
endRow = inf;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
fileName = sprintf('myfile%02d.txt',fileNum);
myData{fileNum} = importfile(fileName,startRow,endRow);

end

Each cell in myData contains an array of data from the corresponding text file.
For example, myData{1} contains the data from the first file, myfile01.txt.

2-7

2 Text Files

Import Formatted Dates and Times from Text Files
Formatted dates and times (such as '01/01/01' or '12:30:45') are not
numeric fields. MATLAB interprets dates and times in files as text strings.

You can use the Import Tool to import formatted dates and times as serial
date numbers. Specify the formats of dates and times, using the drop-down
menu for each column. You can select from a predefined date format, or enter
a custom format.

When importing formatted dates and times programmatically, how you
import them depends on their location in the file. If the dates and times are:

• In the initial columns, like row headers, call importdata. For more
information, see “Import Numeric Data and Header Text from Text Files”
on page 2-12.

2-8

Import Formatted Dates and Times from Text Files

• In other columns, call textscan. For more information, see “Import Mixed
Text and Numeric Data from Text Files” on page 2-14.

2-9

2 Text Files

Import Numeric Data from Text Files

In this section...

“Import Text Files with Numeric Fields” on page 2-10

“Select a Range of Numeric Data” on page 2-11

Import Text Files with Numeric Fields
You can import any ASCII data file with numeric fields easily by using
the Import Tool or by calling importdata. For example, consider a
comma-delimited ASCII data file named ph.dat:

7.2, 8.5, 6.2, 6.6
5.4, 9.2, 8.1, 7.2

Use importdata to import the data. Call whos to learn the class of the data
returned, and type the name of the output variable (in this case, 'ph') to
see its contents:

ph = importdata('ph.dat');
whos
ph

This code returns

Name Size Bytes Class Attributes
ph 2x4 64 double

ph =
7.2000 8.5000 6.2000 6.6000
5.4000 9.2000 8.1000 7.2000

Note As an alternative to importdata, you can import data like ph.dat
with load or dlmread. Each function returns an identical 2-by-4 double
array for ph.

2-10

Import Numeric Data from Text Files

Select a Range of Numeric Data
To select specific rows and columns to import, use dlmread. For example, read
the first two columns from ph.dat:

ph_partial = dlmread('ph.dat', ',', 'A1..B2')

ph_partial =
7.2000 8.5000
5.4000 9.2000

2-11

2 Text Files

Import Numeric Data and Header Text from Text Files
This example shows how to import a text file that contains numeric data
and header text with the importdata function. The file in this example,
grades.dat, contains the following data (to create the file, use any text
editor, and copy and paste):

Class Grades for Spring Term
Grade1 Grade2 Grade3

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

Call importdata:

grades_imp = importdata('grades.dat');

Because the data includes both row and column headers, importdata returns
the structure grades_imp, where

grades_imp =
data: [4x3 double]

textdata: {6x1 cell}

grades_imp.data =
85 90 95
90 92 98

100 95 97
77 86 93

grades_imp.textdata =
'Class Grades for Spring Term'
' Grade1 Grade2 Grade3'
'John'
'Ann'
'Martin'
'Rob'

If your data file includes either column headers or a single column of row
headers, but not both, importdata stores the row or column headers in

2-12

Import Numeric Data and Header Text from Text Files

rowheaders or colheaders fields of the output structure. For example, if
grades_col.dat includes only column headers:

Grade1 Grade2 Grade3
85 90 95
90 92 98
100 95 97
77 86 93

A call to importdata of the form

grades_col = importdata('grades_col.dat');

returns

grades_col =
data: [4x3 double]

textdata: {'Grade1' 'Grade2' 'Grade3'}
colheaders: {'Grade1' 'Grade2' 'Grade3'}

If your file contains multiple column headers, colheaders contains only the
lowest row of header text. The textdata field contains all text.

Note The importdata function cannot interpret nonnumeric characters —
including formatted dates and times — unless they are part of row or column
headers. To import files with nonnumeric data fields, use textscan. For more
information, see “Import Mixed Text and Numeric Data from Text Files”
on page 2-14.

2-13

2 Text Files

Import Mixed Text and Numeric Data from Text Files
To import an ASCII data file with fields that contain nonnumeric characters,
use textscan.

For example, you can use textscan to import a file called mydata.dat:

Sally 09/12/2005 12.34 45 Yes
Larry 10/12/2005 34.56 54 Yes
Tommy 11/12/2005 67.89 23 No

Open the File
Preface any calls to textscan with a call to fopen to open the file for reading,
and, when finished, close the file with fclose.

Describe Your Data
The textscan function is flexible, but requires that you specify more
information about your file. Describe each field using format specifiers, such
as '%s' for a string, '%d' for an integer, or '%f' for a floating-point number.
(For a complete list of format specifiers, see the textscan reference page.)

Import into a Cell Array
Send textscan the file identifier and the format specifiers to describe the five
fields in each row of mydata.dat. textscan returns a cell array with five cells:

fid = fopen('mydata.dat');
mydata = textscan(fid, '%s %s %f %d %s');
fclose(fid);

whos mydata
Name Size Bytes Class Attributes

mydata 1x5 952 cell

mydata =
{3x1 cell} {3x1 cell} [3x1 double] [3x1 int32] {3x1 cell}

where

2-14

Import Mixed Text and Numeric Data from Text Files

mydata{1} = {'Sally'; 'Larry'; 'Tommy'}
mydata{2} = {'09/12/2005'; '10/12/2005'; '11/12/2005'}
mydata{3} = [12.3400; 34.5600; 67.8900]
mydata{4} = [45; 54; 23]
mydata{5} = {'Yes'; 'Yes'; 'No'}

2-15

2 Text Files

Import Large Text Files
To import large data files, consider using textscan to read the file in
segments, which reduces the amount of memory required.

For example, suppose you want to process the file largefile.dat with
the user-defined process_data function. This example assumes that the
process_data function processes any number of lines of data, including zero.

clear segarray;
block_size = 10000;

% describe the format of the data
% for more information, see the textscan reference page
format = '%s %n %s %8.2f %8.2f %8.2f %8.2f %u8';

file_id = fopen('largefile.dat');

while ~feof(file_id)
segarray = textscan(file_id, format, block_size);
process_data(segarray);

end

fclose(file_id);

The fopen function positions a pointer at the beginning of the file, and each
read operation adjusts the location of that pointer. You can also use low-level
file I/O functions such as fseek and frewind to reposition the pointer within
the file. For more information, see “Moving within a File” on page 4-15.

2-16

Import Data from a Nonrectangular Text File

Import Data from a Nonrectangular Text File
Most of the ASCII data import functions require that your data is rectangular,
that is, in a regular pattern of columns and rows. The textscan function
relaxes this restriction, although it requires that your data is in a repeated
pattern.

For example, you can use textscan to import a file called nonrect.dat:

begin
v1=12.67
v2=3.14
v3=6.778
end
begin
v1=21.78
v2=5.24
v3=9.838
end

To use textscan, describe the pattern of the data using format specifiers and
delimiter parameters. Typical format specifiers include '%s' for a string,
'%d' for an integer, or '%f' for a floating-point number. (For a complete list
of format specifiers and parameters, see the textscan reference page.)

To import nonrect.dat, use the format specifier '%*s' to tell textscan to skip
the strings 'begin' and 'end’ . Include the literals 'v1=', 'v2=', and 'v3='
as part of the format specifiers, so that textscan ignores those strings as well.

Since each field is on a new line, the delimiter is a newline character
('\n'). To combine all the floating-point data into a single array, set the
CollectOutput parameter to true. The final call to textscan is:

fid = fopen('nonrect.dat');

c = textscan(fid, ...
'%*s v1=%f v2=%f v3=%f %*s', ...
'Delimiter', '\n', ...
'CollectOutput', true);

2-17

2 Text Files

fclose(fid);

whos c
Name Size Bytes Class Attributes

c 1x1 108 cell

c{1} =
12.6700 3.1400 6.7780
21.7800 5.2400 9.8380

2-18

Ways to Write to Text Files

Ways to Write to Text Files
If you want to use your data in another application that reads ASCII files,
MATLAB functions offer several data export options. For example, you can
create a:

• Rectangular, delimited ASCII data file from an array. For more
information, see “Write to Delimited Data Files” on page 2-20.

• Diary (or log) file of keystrokes and the resulting text output. For more
information, see “Write to a Diary File” on page 2-24.

• Specialized ASCII file using low-level functions such as fprintf. For more
information, see “Export to Text Data Files with Low-Level I/O” on page
4-19.

• MEX-file to access your C/C++ or Fortran routine that writes to a particular
text file format. For more information, see “MEX-Files Call C/C++ and
Fortran Programs”.

Additional MATLAB functions export data to spreadsheets, scientific data
formats, and other file formats. For a complete list, see “Supported File
Formats” on page 1-2.

2-19

2 Text Files

Write to Delimited Data Files

In this section...

“Overview” on page 2-20

“Exporting a Numeric Array to an ASCII File Using save” on page 2-20

“Exporting a Numeric Array to an ASCII File Using dlmwrite” on page 2-21

“Exporting a Cell Array to a Text File” on page 2-22

Overview
To export a numeric array as a delimited ASCII data file, you can use either
the save function, specifying the -ASCII qualifier, or the dlmwrite function.

Both save and dlmwrite are easy to use. With dlmwrite, you can specify any
character as a delimiter, and you can export subsets of an array by specifying
a range of values.

However, save -ascii and dlmwrite do not accept cell arrays as input. To
create a delimited ASCII file from the contents of a cell array, do one of the
following:

• Convert the cell array to a matrix using the cell2mat function, then call
save or dlmwrite. Use this approach when your cell array contains only
numeric data, and easily translates to a two-dimensional numeric array.

• Export the cell array using low-level file I/O functions. For more
information, see “Exporting a Cell Array to a Text File” on page 2-22.

Exporting a Numeric Array to an ASCII File Using
save
To export the array A, where

A = [1 2 3 4 ; 5 6 7 8];

to a space-delimited ASCII data file, use the save function as follows:

save my_data.out A -ASCII

2-20

Write to Delimited Data Files

To view the file, use the type function:

type my_data.out

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

When you use save to write a character array to an ASCII file, it writes the
ASCII equivalent of the characters to the file. For example, if you write the
character string 'hello' to a file, save writes the values

104 101 108 108 111

to the file in 8-digit ASCII format.

To write data in 16-digit format, use the -double option. To create a
tab-delimited file instead of a space-delimited file, use the -tabs option.

Exporting a Numeric Array to an ASCII File Using
dlmwrite
To export a numeric or character array to an ASCII file with a specified
delimiter, use the dlmwrite function.

For example, to export the array A,

A = [1 2 3 4 ; 5 6 7 8];

to an ASCII data file that uses semicolons as a delimiter, use this command:

dlmwrite('my_data.out',A, ';')

To view the file, use the type function:

type my_data.out

1;2;3;4
5;6;7;8

2-21

2 Text Files

By default, dlmwrite uses a comma as a delimiter. You can specify a space
(' ') or other character as a delimiter. To specify no delimiter, use empty
quotation marks ('').

Exporting a Cell Array to a Text File
To export a cell array that contains nonnumeric data to a text file, use the
fprintf function.

The fprintf function is flexible, but requires that you provide details about
the format of your data. Describe each field using format specifiers, such as
'%s' for a string, '%d' for an integer, or '%f' for a number in fixed-point
notation. (For a complete list of format specifiers, see the fprintf reference
page.)

The character that you use to separate the format specifiers determines the
delimiter for the output file. For example, a format string such as '%d,%d,%d'
creates a comma-separated file, while the format '%d %d %d' creates a
space-delimited file.

Preface any calls to fprintf with a call to fopen to open the file, and,
when finished, close the file with fclose. By default, fopen opens a file for
read-only access. Use the permission string 'w' to write to the file.

For example, consider the array mycell, where

mycell = { 'a' 1 2 3 ; 'b' 4 5 6 };

To export the cell array, print one row of data at a time. Include a newline
character at the end of each row ('\n').

Note Some Windows text editors, including Microsoft Notepad, require
a newline character sequence of '\r\n' instead of '\n'. However, '\n' is
sufficient for Microsoft Word or WordPad.

Send fprintf the file identifier and the format specifiers to describe the
fields in each row:

2-22

Write to Delimited Data Files

[nrows,ncols]= size(mycell);

filename = 'celldata.dat';
fid = fopen(filename, 'w');

for row=1:nrows
fprintf(fid, '%s %d %d %d\n', mycell{row,:});

end

fclose(fid);

To view the file, use the type function:

type celldata.dat

a 1 2 3
b 4 5 6

For more information, see “Export to Text Data Files with Low-Level I/O”
on page 4-19.

2-23

2 Text Files

Write to a Diary File
To keep an activity log of your MATLAB session, use the diary function.
diary creates a verbatim copy of your MATLAB session in a disk file
(excluding graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

execute these commands at the MATLAB prompt to export this array using
diary:

1 Turn on the diary function. Optionally, you can name the output file diary
creates:

diary my_data.out

2 Display the contents of the array you want to export. This example displays
the array A. You could also display a cell array or other MATLAB class:

A =
1 2 3 4
5 6 7 8

3 Turn off the diary function:

diary off

diary creates the file my_data.out and records all the commands executed in
the MATLAB session until you turn it off:

A =

1 2 3 4
5 6 7 8

diary off

4 Open the diary file my_data.out in a text editor and remove the extraneous
text, if desired.

2-24

3

Spreadsheets

• “Ways to Import Spreadsheets” on page 3-2

• “Select Spreadsheet Data Using Import Tool” on page 3-3

• “Import a Worksheet or Range with xlsread” on page 3-6

• “Import All Worksheets in a File with importdata” on page 3-8

• “System Requirements for Importing Spreadsheets” on page 3-10

• “When to Convert Dates from Excel Files” on page 3-11

• “Export to Excel Spreadsheets” on page 3-13

3 Spreadsheets

Ways to Import Spreadsheets
There are several ways to read data from a spreadsheet file into the MATLAB
workspace:

• “Select Spreadsheet Data Using Import Tool” on page 3-3

• “Import a Worksheet or Range with xlsread” on page 3-6

• “Import All Worksheets in a File with importdata” on page 3-8

Alternatively, paste data from the clipboard into MATLAB using one of the
following methods:

• On the Workspace browser title bar, click , and then select Paste.

• Open an existing variable in the Variables editor, right-click, and then
select Paste Excel Data.

• Call uiimport -pastespecial.

Some import options require that your system includes Excel for Windows.
For more information, see “System Requirements for Importing Spreadsheets”
on page 3-10.

3-2

Select Spreadsheet Data Using Import Tool

Select Spreadsheet Data Using Import Tool

In this section...

“Select Data Interactively” on page 3-3

“Import Data from Multiple Spreadsheets” on page 3-4

Select Data Interactively
This example shows how to import data from a spreadsheet into the
workspace with the Import Tool. The worksheet in this example includes
three columns of data labeled Station, Temp, and Date:

Station Temp Date
12 98 9/22/2010
13 x 10/23/2010
14 97 12/1/2010

On the Home tab, in the Variable section, click Import Data .
Alternatively, in the Current Folder browser, double-click the name of a file
with an extension of .xls, .xlsx, .xlsb, or .xlsm. The Import Tool opens.

Select the data range and the type of variable to create (matrix, column
vectors, or cell array). For example, the data in the previous figure
corresponds to a 3-by-3 matrix named untitled. You can edit the variable

3-3

3 Spreadsheets

name within the tab, and you can select noncontiguous sections of data for
the same variable.

If you choose to import as a matrix or column vectors, the tool highlights
any nonnumeric data in the worksheet. Each highlight color corresponds
to a proposed rule to make the data fit into a numeric array. You can add,
remove, reorder, or edit rules, such as changing the replacement value from 0
to NaN, as shown.

All rules apply to the imported data only, and do not change the data in the
file. You must specify rules any time the range includes nonnumeric data and
you are importing into a matrix or column vectors.

Any cells that contain #Error? correspond to formula errors in your
spreadsheet file, such as division by zero. The Import Tool regards these
cells as nonnumeric.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Spreadsheets
If you plan to perform the same import operation on multiple files, you can
generate code from the Import Tool to make it easier to repeat the operation.
On all platforms, the Import Tool can generate a program script that you can
edit and run to import the files. On Microsoft Windows systems with Excel
software, the Import Tool can generate a function that you can call for each
file.

For example, suppose you have a set of spreadsheets in the current folder
named myfile01.xlsx through myfile25.xlsx, and you want to import the
same range of data, A2:G100, from the first worksheet in each file. Generate
code to import the entire set of files as follows:

1 Open one of the files in the Import Tool.

3-4

Select Spreadsheet Data Using Import Tool

2 From the Import button, select Generate Function. The Import Tool
generates code similar to the following excerpt, and opens the code in the
Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet
...

3 Save the function.

4 In a separate program file or at the command line, create a for loop to
import data from each spreadsheet into a cell array named myData:

numFiles = 25;
range = 'A2:G100';
sheet = 1;
myData = cell(1,numFiles);

for fileNum = 1:numFiles
fileName = sprintf('myfile%02d.xlsx',fileNum);
myData{fileNum} = importfile(fileName,sheet,range);

end

Each cell in myData contains an array of data from the corresponding
worksheet. For example, myData{1} contains the data from the first file,
myfile01.xlsx.

3-5

3 Spreadsheets

Import a Worksheet or Range with xlsread

In this section...

“Reading from a Spreadsheet” on page 3-6

“Getting Information about a Spreadsheet” on page 3-7

Reading from a Spreadsheet
Consider the file climate.xlsx created with xlswrite as follows:

d = {'Time', 'Temp';
12 98;
13 99;
14 97}

xlswrite('climate.xlsx', d, 'Temperatures');

To import the numeric data into a matrix, use xlsread with a single return
argument. xlsread ignores any leading row or column of text in the numeric
result:

ndata = xlsread('climate.xlsx', 'Temperatures')

ndata =
12 98
13 99
14 97

To import both numeric data and text data, specify two return values for
xlsread:

[ndata, headertext] = xlsread('climate.xlsx', 'Temperatures')

ndata =
12 98
13 99
14 97

headertext =

3-6

Import a Worksheet or Range with xlsread

'Time' 'Temp'

To read only the first row of data, specify the range:

firstrow = xlsread('climate.xlsx', 'Temperatures', 'A2:B2')

firstrow =
12 98

Note Excel and MATLAB can store dates as strings (such as '10/31/96')
or numbers (such as 35369 or 729329). If your system does not have Excel
for Windows, or if your file includes numeric dates, see “When to Convert
Dates from Excel Files” on page 3-11.

Getting Information about a Spreadsheet
To determine whether a file contains a readable Excel spreadsheet, use the
xlsfinfo function . For readable files, xlsfinfo returns a nonempty string,
such as 'Microsoft Excel Spreadsheet'. Otherwise, it returns an empty
string ('').

You also can use xlsfinfo to identify the names of the worksheets in the
file, and to obtain the file format reported by Excel. For example, retrieve
information on the spreadsheet climate.xlsx:

[type, sheets] = xlsfinfo('climate.xlsx')

type =
Microsoft Excel Spreadsheet
sheets =

'Sheet1' 'Sheet2' 'Sheet3' 'Temperatures'

3-7

3 Spreadsheets

Import All Worksheets in a File with importdata
The importdata function reads data from an Excel file into a structure.
Continuing the example in “Import a Worksheet or Range with xlsread” on
page 3-6, where the data includes column headers, a call of the form

climate = importdata('climate.xlsx') % with column headers

returns the nested structure array

climate =
data: [1x1 struct]

textdata: [1x1 struct]
colheaders: [1x1 struct]

Structures created from Excel files with row headers include the field
rowheaders, which also contains a 1-by-1 structure.

The structure named data contains one field for each worksheet with numeric
data. The other structures contain one field for each worksheet with text
cells or headers. In this case:

climate.data =
Temperatures: [3x2 double]

climate.textdata =
Temperatures: {'Time' 'Temp'}

climate.colheaders =
Temperatures: {'Time' 'Temp'}

If the Excel file contains only numeric data (no row or column headers, and no
inner cells with text), the output structure is simpler. importdata returns a
1-by-1 structure, with one field for each worksheet with data.

For example, if the Temperatures worksheet in climate_nums.xlsx does
not include column headers, the call

ndata = importdata('climate_nums.xlsx') % only numeric data

returns

3-8

Import All Worksheets in a File with importdata

ndata =
Temperatures: [3x2 double]

Note Excel and MATLAB can store dates as strings (such as '10/31/96')
or numbers (such as 35369 or 729329). If your system does not have Excel
for Windows, or if your file includes numeric dates, see “When to Convert
Dates from Excel Files” on page 3-11.

3-9

3 Spreadsheets

System Requirements for Importing Spreadsheets

In this section...

“Importing Spreadsheets with Excel for Windows” on page 3-10

“Importing Spreadsheets Without Excel for Windows” on page 3-10

Importing Spreadsheets with Excel for Windows
If your system has Excel for Windows installed, including the COM server
(part of the typical installation of Excel):

• All MATLAB import options support XLS, XLSX, XLSB, XLSM, XLTM,
and XLTX formats.

• xlsread also imports HTML-based formats.

• xlsread includes an option to open Excel and select the range of data
interactively. To use this option, call xlsread with the following syntax:

mydata = xlsread(filename, -1)

• If you have Excel 2003 installed, but want to read a 2007 format (such as
XLSX, XLSB, or XLSM), install the Office 2007 Compatibility Pack.

• If you have Excel 2010, all MATLAB import options support ODS files.

Note Large files in XLSX format sometimes load slowly. For better import
and export performance, Microsoft recommends that you use the XLSB format.

Importing Spreadsheets Without Excel for Windows
If your system does not have Excel for Windows installed, or the COM server
is not available:

• All MATLAB import options read XLS, XLSX, XLSM, XLTM, and XLTX
files.

3-10

When to Convert Dates from Excel® Files

When to Convert Dates from Excel Files

In this section...

“MATLAB and Excel Dates” on page 3-11

“Example — Importing an Excel File with Numeric Dates” on page 3-11

MATLAB and Excel Dates
In both MATLAB and Excel applications, dates can be represented as
character strings or numeric values. For example, May 31, 2009, can be
represented as the character string '05/31/09' or as the numeric value
733924. Within MATLAB, the datestr and datenum functions allow you to
convert easily between string and numeric representations.

If you import a spreadsheet with dates stored as strings on a system with
Excel for Windows, or if you use the Import Tool, you do not need to convert
the dates before processing in MATLAB.

However, if you use xlsread or importdata to import a spreadsheet with
dates stored as numbers, or if your system does not have Excel for Windows,
you must convert the dates. Both Excel and MATLAB represent numeric
dates as a number of serial days elapsed from a specific reference date, but
the applications use different reference dates.

The following table lists the reference dates for MATLAB and Excel. For more
information on the 1900 and 1904 date systems, see the Excel help.

Application Reference Date

MATLAB January 0, 0000

Excel for Windows January 1, 1900

Excel for the Macintosh January 2, 1904

Example — Importing an Excel File with Numeric
Dates
Consider the hypothetical file weight_log.xls with

3-11

3 Spreadsheets

Date Weight
10/31/96 174.8
11/29/96 179.3
12/30/96 190.4
01/31/97 185.7

To import this file, first convert the dates within Excel to a numeric format.
In Windows, the file now appears as

Date Weight
35369 174.8
35398 175.3
35429 190.4
35461 185.7

Import the file:

wt = xlsread('weight_log.xls');

Convert the dates to the MATLAB reference date. If the file uses the 1900
date system (the default in Excel for Windows):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('30-Dec-1899');

If the file uses the 1904 date system (the default in Excel for the Macintosh):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('01-Jan-1904');

3-12

Export to Excel® Spreadsheets

Export to Excel Spreadsheets

In this section...

“Writing to a Spreadsheet File” on page 3-13

“Adding a New Worksheet” on page 3-13

“File Formats that xlswrite Supports” on page 3-14

“Converting Dates” on page 3-14

“Formatting Cells in Excel Files” on page 3-15

Writing to a Spreadsheet File
Use xlswrite to export a matrix to a Microsoft Excel spreadsheet file. With
xlswrite, you can export data from the workspace to any worksheet in the
file, and to any location within that worksheet. By default, xlswrite writes
your matrix data to the first worksheet in the file, starting at cell A1.

This example writes a mix of text and numeric data to the file climate.xls.
Call xlswrite, specifying a worksheet labeled Temperatures, and the region
within the worksheet where you want to write the data. xlswrite writes
the 4-by-2 matrix d to the rectangular region that starts at cell E1 in its
upper-left corner:

d = {'Time', 'Temp'; 12 98; 13 99; 14 97}
d =

'Time' 'Temp'
[12] [98]
[13] [99]
[14] [97]

xlswrite('climate.xls', d, 'Temperatures', 'E1');

Adding a New Worksheet
If the target worksheet does not already exist in the file, xlswrite displays
the following warning:

Warning: Added specified worksheet.

3-13

3 Spreadsheets

You can disable these warnings with this command:

warning off MATLAB:xlswrite:AddSheet

File Formats that xlswrite Supports
xlswrite can write to any file format recognized by your version of Excel
for Windows. If you have Excel 2003 installed, but want to write to a 2007
format (such as XLSX, XLSB, or XLSM), you must install the Office 2007
Compatibility Pack.

Note If you are using a system that does not have Excel for Windows
installed, xlswrite writes your data to a comma-separated value (CSV) file.

Converting Dates
In both MATLAB and Excel applications, dates can be represented as
character strings or numeric values. For example, May 31, 2009, can be
represented as the character string '05/31/09' or as the numeric value
733924. Within MATLAB, The datestr and datenum functions allow you to
convert easily between string and numeric representations.

If you export a matrix with dates stored as strings, you do not need to convert
the dates before processing in Excel.

However, if you export a matrix with dates stored as numbers, you must
convert the dates. Both Excel and MATLAB represent numeric dates as
a number of serial days elapsed from a specific reference date, but the
applications use different reference dates.

The following table lists the reference dates for MATLAB and Excel. For more
information on the 1900 and 1904 date systems, see the Excel help.

Application Reference Date

MATLAB January 0, 0000

Excel for Windows January 1, 1900

Excel for the Macintosh January 2, 1904

3-14

Export to Excel® Spreadsheets

Example — Exporting to an Excel File with Numeric Dates
Consider a numeric matrix wt_log. The first column contains numeric dates,
and the second column contains weights:

wt_log = [729698 174.8; ...
729726 175.3; ...
729760 190.4; ...
729787 185.7];

% To view the dates before exporting, call datestr:
datestr(wt_log(:,1))

The formatted dates returned by datestr are:

04-Nov-1997
02-Dec-1997
05-Jan-1998
01-Feb-1998

To export the numeric matrix to Excel for Windows (and use the default 1900
date system), convert the dates:

datecol = 1;
wt_log(:,datecol) = wt_log(:,datecol) - datenum('30-Dec-1899');
xlswrite('new_log.xls', wt_log);

To export for use in Excel for the Macintosh (with the default 1904 date
system), convert as follows:

datecol = 1;
wt_log(:,datecol) = wt_log(:,datecol) - datenum('01-Jan-1904');
xlswrite('new_log.xls', wt_log);

Formatting Cells in Excel Files
To write data to Excel files on Windows systems with custom formats (such
as fonts or colors), access the COM server directly using actxserver rather
than xlswrite. For example, Technical Solution 1-QLD4K uses actxserver
to establish a connection between MATLAB and Excel, write data to a
worksheet, and specify the colors of the cells.

For more information, see “Getting Started with COM”.

3-15

http://www.mathworks.com/support/solutions/en/data/1-QLD4K/index.html?solution=1-QLD4K

3 Spreadsheets

3-16

4

Low-Level File I/O

• “Import Text Data Files with Low-Level I/O” on page 4-2

• “Import Binary Data with Low-Level I/O” on page 4-11

• “Export to Text Data Files with Low-Level I/O” on page 4-19

• “Export Binary Data with Low-Level I/O” on page 4-26

4 Low-Level File I/O

Import Text Data Files with Low-Level I/O

In this section...

“Overview” on page 4-2

“Reading Data in a Formatted Pattern” on page 4-3

“Reading Data Line-by-Line” on page 4-6

“Testing for End of File (EOF)” on page 4-7

“Opening Files with Different Character Encodings” on page 4-9

Overview
Low-level file I/O functions allow the most control over reading or writing
data to a file. However, these functions require that you specify more detailed
information about your file than the easier-to-use high-level functions, such as
importdata. For more information on the high-level functions that read text
files, see “Ways to Import Text Files” on page 2-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file
you can view in a text editor. For more information, see “Reading Data in
a Formatted Pattern” on page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline
character separates each line. For more information, see “Reading Data
Line-by-Line” on page 4-6.

• fread, which reads a stream of data at the byte or bit level. For more
information, see “Import Binary Data with Low-Level I/O” on page 4-11.

For additional information, see:

• “Testing for End of File (EOF)” on page 4-7

• “Opening Files with Different Character Encodings” on page 4-9

4-2

Import Text Data Files with Low-Level I/O

Note The low-level file I/O functions are based on functions in the ANSI®

Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

Reading Data in a Formatted Pattern
To import text files that importdata and textscan cannot read, consider
using fscanf. The fscanf function requires that you describe the format of
your file, but includes many options for this format description.

For example, create a text file mymeas.dat as shown. The data in mymeas.dat
includes repeated sets of times, dates, and measurements. The header text
includes the number of sets of measurements, N:

Measurement Data
N=3

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40
15-Apr-2003
7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

4-3

4 Low-Level File I/O

Opening the File
As with any of the low-level I/O functions, before reading, open the file with
fopen, and obtain a file identifier. By default, fopen opens files for read
access, with a permission of 'r'.

When you finish processing the file, close it with fclose(fid).

Describing the Data
Describe the data in the file with format specifiers, such as '%s' for a string,
'%d' for an integer, or '%f' for a floating-point number. (For a complete list
of specifiers, see the fscanf reference page.)

To skip literal characters in the file, include them in the format description.
To skip a data field, use an asterisk ('*') in the specifier.

For example, consider the header lines of mymeas.dat:

Measurement Data % skip 2 strings, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n

% go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
...

To read the headers and return the single value for N:

N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

Specifying the Number of Values to Read
By default, fscanf reapplies your format description until it cannot match
the description to the data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not
attempt to read the entire file. For example, in mymeas.dat, each set of
measurements includes a fixed number of rows and columns:

measrows = 4;

4-4

Import Text Data Files with Low-Level I/O

meascols = 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace
There are several ways to store mymeas.dat in the MATLAB workspace. In
this case, read the values into a structure. Each element of the structure has
three fields: mtime, mdate, and meas.

Note fscanf fills arrays with numeric values in column order. To make
the output array match the orientation of numeric data in a file, transpose
the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements
for n = 1:N

mystruct(n).mtime = fscanf(fid, '%s', 1);
mystruct(n).mdate = fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mystruct(n).meas = ...

fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

4-5

4 Low-Level File I/O

Reading Data Line-by-Line
MATLAB provides two functions that read lines from files and store them
in string vectors: fgetl and fgets. The fgets function copies the newline
character to the output string, but fgetl does not.

The following example uses fgetl to read an entire file one line at a time.
The function litcount determines whether an input literal string (literal)
appears in each line. If it does, the function prints the entire line preceded by
the number of times the literal string appears on the line.

function y = litcount(filename, literal)
% Search for number of string matches per line.

fid = fopen(filename);
y = 0;
tline = fgetl(fid);
while ischar(tline)

matches = strfind(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
tline = fgetl(fid);

end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times the string 'an' appears in this file, call litcount:

litcount('badpoem','an')

This returns:

2: Oranges and lemons,

4-6

Import Text Data Files with Low-Level I/O

1: Pineapples and tea.
3: Orangutans and monkeys,
ans =

6

Testing for End of File (EOF)
When you read a portion of your data at a time, you can use feof to check
whether you have reached the end of the file. feof returns a value of 1 when
the file pointer is at the end of the file. Otherwise, it returns 0.

Note Opening an empty file does not move the file position indicator to the
end of the file. Read operations, and the fseek and frewind functions, move
the file position indicator.

Testing for EOF with feof
When you use textscan, fscanf, or fread to read portions of data at a time,
use feof to check whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas.dat has the following
form, with no information about the number of measurement sets. Read the
data into a structure with fields for mtime, mdate, and meas:

12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02
23-Aug-1990
2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46

To read the file:

4-7

4 Low-Level File I/O

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize = finfo.bytes;

if fsize > 0

% read the file
block = 1;
while ~feof(fid)

mystruct(block).mtime = fscanf(fid, '%s', 1);
mystruct(block).mdate = fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mystruct(block).meas = ...

fscanf(fid, '%f', [measrows, meascols])';

block = block + 1;
end

end

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets
If you use fgetl or fgets in a control loop, feof is not always the best way to
test for end of file. As an alternative, consider checking whether the value
that fgetl or fgets returns is a character string.

For example, the function litcount described in “Reading Data Line-by-Line”
on page 4-6 includes the following while loop and fgetl calls :

4-8

Import Text Data Files with Low-Level I/O

y = 0;
tline = fgetl(fid);
while ischar(tline)

matches = strfind(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
tline = fgetl(fid);

end

This approach is more robust than testing ~feof(fid) for two reasons:

• If fgetl or fgets find data, they return a string. Otherwise, they return
a number (-1).

• After each read operation, fgetl and fgets check the next character in the
file for the end-of-file marker. Therefore, these functions sometimes set the
end-of-file indicator before they return a value of -1. For example, consider
the following three-line text file. Each of the first two lines ends with a
newline character, and the third line contains only the end-of-file marker:

123
456

Three sequential calls to fgetl yield the following results:

t1 = fgetl(fid); % t1 = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

This behavior does not conform to the ANSI specifications for the related C
language functions.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

4-9

4 Low-Level File I/O

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-10

Import Binary Data with Low-Level I/O

Import Binary Data with Low-Level I/O

In this section...

“Low-Level Functions for Importing Data” on page 4-11

“Reading Binary Data in a File” on page 4-12

“Reading Portions of a File” on page 4-14

“Reading Files Created on Other Systems” on page 4-17

“Opening Files with Different Character Encodings” on page 4-18

Low-Level Functions for Importing Data
Low-level file I/O functions allow the most direct control over reading or
writing data to a file. However, these functions require that you specify
more detailed information about your file than the easier-to-use high-level
functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats” on page 1-2.

If the high-level functions cannot import your data, use one of the following:

• fscanf, which reads formatted data in a text or ASCII file; that is, a file
you can view in a text editor. For more information, see “Reading Data in
a Formatted Pattern” on page 4-3.

• fgetl and fgets, which read one line of a file at a time, where a newline
character separates each line. For more information, see “Reading Data
Line-by-Line” on page 4-6.

• fread, which reads a stream of data at the byte or bit level. For more
information, see “Reading Binary Data in a File” on page 4-12.

Note The low-level file I/O functions are based on functions in the ANSI
Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

4-11

4 Low-Level File I/O

Reading Binary Data in a File
As with any of the low-level I/O functions, before importing, open the file with
fopen, and obtain a file identifier. When you finish processing a file, close it
with fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as
an 8-bit unsigned integer (uint8). fread creates a column vector, with one
element for each byte in the file. The values in the column vector are of class
double.

For example, consider the file nine.bin, created as follows:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

Changing the Dimensions of the Array
By default, fread reads all values in the file into a column vector. However,
you can specify the number of values to read, or describe a two-dimensional
output matrix.

For example, to read nine.bin, described in the previous example:

fid = fopen('nine.bin');

% Read only the first six values
col6 = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);
two_dim4 = fread(fid, [2, 2]);

4-12

Import Binary Data with Low-Level I/O

% Read into a matrix with 3 rows and
% unspecified number of columns
frewind(fid);
two_dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

Describing the Input Values
If the values in your file are not 8-bit unsigned integers, specify the size of
the values.

For example, consider the file fpoint.bin, created with double-precision
values as follows:

myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');
fwrite(fid, myvals, 'double');
fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')';

fclose(fid);

For a complete list of precision descriptions, see the fread function reference
page.

Saving Memory
By default, fread creates an array of class double. Storing double-precision
values in an array requires more memory than storing characters, integers, or
single-precision values.

4-13

4 Low-Level File I/O

To reduce the amount of memory required to store your data, specify the class
of the array using one of the following methods:

• Match the class of the input values with an asterisk ('*'). For example,
to read single-precision values into an array of class single, use the
command:

mydata = fread(fid,'*single')

• Map the input values to a new class with the '=>' symbol. For example, to
read uint8 values into an uint16 array, use the command:

mydata = fread(fid,'uint8=>uint16')

For a complete list of precision descriptions, see the fread function reference
page.

Reading Portions of a File
MATLAB low-level functions include several options for reading portions of
binary data in a file:

• Read a specified number of values at a time, as described in “Changing the
Dimensions of the Array” on page 4-12. Consider combining this method
with “Testing for End of File” on page 4-14.

• Move to a specific location in a file to begin reading. For more information,
see “Moving within a File” on page 4-15.

• Skip a certain number of bytes or bits after each element read. For an
example, see “Writing and Reading Complex Numbers” on page 4-31.

Testing for End of File
When you open a file, MATLAB creates a pointer to indicate the current
position within the file.

Note Opening an empty file does not move the file position indicator to the
end of the file. Read operations, and the fseek and frewind functions, move
the file position indicator.

4-14

Import Binary Data with Low-Level I/O

Use the feof function to check whether you have reached the end of a file.
feof returns a value of 1 when the file pointer is at the end of the file.
Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat'; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)
currData = fread(fid, segsize);
if ~isempty(currData)

disp('Current Data:');
disp(currData);

end
end

fclose(fid);

Moving within a File
To read or write selected portions of data, move the file position indicator to
any location in the file. For example, call fseek with the syntax

fseek(fid,offset,origin);

where:

• fid is the file identifier obtained from fopen.

• offset is a positive or negative offset value, specified in bytes.

• origin specifies the location from which to calculate the position:

'bof' Beginning of file

'cof' Current position in file

'eof' End of file

4-15

4 Low-Level File I/O

Alternatively, to move easily to the beginning of a file:

frewind(fid);

Use ftell to find the current position within a given file. ftell returns the
number of bytes from the beginning of the file.

For example, create a file five.bin:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses
two storage bytes in five.bin.

Reopen five.bin for reading:

fid = fopen('five.bin','r');

Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid,6,'bof');

Read the next element:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the
current file position indicator, call ftell:

position = ftell(fid)

position =
8

4-16

Import Binary Data with Low-Level I/O

To move the file position indicator back 4 bytes, call fseek again:

status = fseek(fid,-4,'cof');

Read the next value:

three = fread(fid,1,'short');

Reading Files Created on Other Systems
Different operating systems store information differently at the byte or bit
level:

• Big-endian systems store bytes starting with the largest address in memory
(that is, they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the
little end).

Windows systems use little-endian byte ordering, and UNIX systems use
big-endian byte ordering.

To read a file created on an opposite-endian system, specify the byte ordering
used to create the file. You can specify the ordering in the call to open the file,
or in the call to read the file.

For example, consider a file with double-precision values named little.bin,
created on a little-endian system. To read this file on a big-endian system, use
one (or both) of the following commands:

• Open the file with

4-17

4 Low-Level File I/O

fid = fopen('little.bin', 'r', 'l')

• Read the file with

mydata = fread(fid, 'double', 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer
function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian
systems.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or
write char values. For example, US-ASCII characters always use 1 byte, but
UTF-8 characters use up to 4 bytes. MATLAB automatically processes the
required number of bytes for each char value based on the specified encoding
scheme. However, if you specify a uchar precision, MATLAB processes each
byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-18

Export to Text Data Files with Low-Level I/O

Export to Text Data Files with Low-Level I/O

In this section...

“Writing to Text Files” on page 4-19

“Appending or Overwriting Existing Files” on page 4-22

“Opening Files with Different Character Encodings” on page 4-25

Writing to Text Files
To create rectangular, delimited ASCII files (such as CSV files) from numeric
arrays, use high-level functions such as dlmwrite. For more information, see
“Write to Delimited Data Files” on page 2-20.

To create other text files, including combinations of numeric and character
data, nonrectangular output files, or files with non-ASCII encoding schemes,
use the low-level fprintf function. For more information, see the following
sections.

Note fprintf is based on its namesake in the ANSI Standard C Library.
However, MATLAB uses a vectorized version of fprintf that writes data from
an array with minimal control loops.

Opening the File
As with any of the low-level I/O functions, before exporting, open or create
a file with fopen, and obtain a file identifier. By default, fopen opens a file
for read-only access, so you must specify the permission to write or append,
such as 'w' or 'a'.

When you finish processing the file, close it with fclose(fid).

Describing the Output
fprintf accepts arrays as inputs, and converts the numbers or characters in
the arrays to text according to your specifications.

4-19

4 Low-Level File I/O

For example, to print floating-point numbers, specify '%f'. Other common
conversion specifiers include '%d' for integers or '%s' for strings. For a
complete list of conversion specifiers, see the fprintf reference page.

To move to a new line in the file, use '\n'.

Note Some Windows text editors, including Microsoft Notepad, require
a newline character sequence of '\r\n' instead of '\n'. However, '\n' is
sufficient for Microsoft Word or WordPad.

fprintf reapplies the conversion information to cycle through all values
of the input arrays in column order.

For example, create a file named exptable.txt that contains a short table of
the exponential function, and a text header:

% create a matrix y, with two rows
x = 0:0.1:1;
y = [x; exp(x)];

% open a file for writing
fid = fopen('exptable.txt', 'w');

% print a title, followed by a blank line
fprintf(fid, 'Exponential Function\n\n');

% print values in column order
% two values appear on each row of the file
fprintf(fid, '%f %f\n', y);
fclose(fid);

4-20

Export to Text Data Files with Low-Level I/O

To view the file, use the type function:

type exptable.txt

This returns the contents of the file:

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options
Optionally, include additional information in the call to fprintf to describe
field width, precision, or the order of the output values. For example, specify
the field width and number of digits to the right of the decimal point in the
exponential table:

fid = fopen('exptable_new.txt', 'w');

fprintf(fid, 'Exponential Function\n\n');
fprintf(fid, '%6.2f %12.8f\n', y);

fclose(fid);

4-21

4 Low-Level File I/O

exptable_new.txt contains the following:

Exponential Function

0.00 1.00000000
0.10 1.10517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

For more information, see “Formatting Strings” in the Programming
Fundamentals documentation, and the fprintf reference page.

Appending or Overwriting Existing Files
By default, fopen opens files with read access. To change the type of file
access, use the permission string in the call to fopen. Possible permission
strings include:

• r for reading

• w for writing, discarding any existing contents of the file

• a for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign
to the permission, such as 'w+' or 'a+'. For a complete list of permission
values, see the fopen reference page.

Note If you open a file for both reading and writing, you must call fseek or
frewind between read and write operations.

4-22

Export to Text Data Files with Low-Level I/O

Example — Append to an Existing Text File
Create a file changing.txt as follows:

myformat = '%5d %5d %5d %5d\n';

fid = fopen('changing.txt','w');
fprintf(fid, myformat, magic(4));
fclose(fid);

The current contents of changing.txt are:

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

Add the values [55 55 55 55] to the end of file:

% open the file with permission to append
fid = fopen('changing.txt','a');

% write values at end of file
fprintf(fid, myformat, [55 55 55 55]);

% close the file
fclose(fid);

To view the file, call the type function:

type changing.txt

This command returns the new contents of the file:

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1
55 55 55 55

Example — Overwrite an Existing Text File
This example shows two ways to replace characters in a text file.

4-23

4 Low-Level File I/O

A text file consists of a contiguous string of characters, including newline
characters. To replace a line of the file with a different number of characters,
you must rewrite the line that you want to change and all subsequent lines in
the file.

For example, replace the first line of changing.txt (created in the previous
example) with longer, descriptive text. Because the change applies to the first
line, rewrite the entire file:

replaceLine = 1;
numLines = 5;
newText = 'This file originally contained a magic square';

fid = fopen('changing.txt','r');
mydata = cell(1, numLines);
for k = 1:numLines

mydata{k} = fgetl(fid);
end
fclose(fid);

mydata{replaceLine} = newText;

fid = fopen('changing.txt','w');
fprintf(fid, '%s\n', mydata{:});
fclose(fid);

The file now contains:

This file originally contained a magic square
2 11 7 14
3 10 6 15

13 8 12 1
55 55 55 55

If you want to replace a portion of a text file with exactly the same number of
characters, you do not need to rewrite any other lines in the file. For example,
replace the third line of changing.txt with [33 33 33 33]:

replaceLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

4-24

Export to Text Data Files with Low-Level I/O

% move the file position marker to the correct line
fid = fopen('changing.txt','r+');
for k=1:(replaceLine-1);

fgetl(fid);
end

% call fseek between read and write operations
fseek(fid, 0, 'cof');

fprintf(fid, myformat, newData);
fclose(fid);

The file now contains:

This file originally contained a magic square
2 11 7 14

33 33 33 33
13 8 12 1
55 55 55 55

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

4-25

4 Low-Level File I/O

Export Binary Data with Low-Level I/O

In this section...

“Low-Level Functions for Exporting Data” on page 4-26

“Writing Binary Data to a File” on page 4-27

“Overwriting or Appending to an Existing File” on page 4-27

“Creating a File for Use on a Different System” on page 4-29

“Opening Files with Different Character Encodings” on page 4-30

“Writing and Reading Complex Numbers” on page 4-31

Low-Level Functions for Exporting Data
Low-level file I/O functions allow the most direct control over reading or
writing data to a file. However, these functions require that you specify
more detailed information about your file than the easier-to-use high-level
functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

• fprintf, which writes formatted data to a text or ASCII file; that is, a
file you can view in a text editor or import into a spreadsheet. For more
information, see “Export to Text Data Files with Low-Level I/O” on page
4-19.

• fwrite, which writes a stream of binary data to a file. For more
information, see “Writing Binary Data to a File” on page 4-27.

Note The low-level file I/O functions are based on functions in the ANSI
Standard C Library. However, MATLAB includes vectorized versions of the
functions, to read and write data in an array with minimal control loops.

4-26

Export Binary Data with Low-Level I/O

Writing Binary Data to a File
Use the fwrite function to export a stream of binary data to a file. As with
any of the low-level I/O functions, before writing, open or create a file with
fopen, and obtain a file identifier. When you finish processing a file, close it
with fclose.

By default, fwrite writes values from an array in column order as 8-bit
unsigned integers (uint8).

For example, create a file nine.bin with the integers from 1 to 9:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]);
fclose(fid);

If the values in your matrix are not 8-bit unsigned integers, specify the
precision of the values. For example, to create a file with double-precision
values:

mydata = [pi, 42, 1/3];

fid = fopen('double.bin','w');
fwrite(fid, mydata, 'double');
fclose(fid);

For a complete list of precision descriptions, see the fwrite function reference
page.

Overwriting or Appending to an Existing File
By default, fopen opens files with read access. To change the type of file
access, use the permission string in the call to fopen. Possible permission
strings include:

• r for reading

• w for writing, discarding any existing contents of the file

• a for appending to the end of an existing file

4-27

4 Low-Level File I/O

To open a file for both reading and writing or appending, attach a plus sign
to the permission, such as 'w+' or 'a+'. For a complete list of permission
values, see the fopen reference page.

Note If you open a file for both reading and writing, you must call fseek or
frewind between read and write operations.

When you open a file, MATLAB creates a pointer to indicate the current
position within the file. To read or write selected portions of data, move this
pointer to any location in the file. For more information, see “Moving within
a File” on page 4-15.

Example — Overwriting Binary Data in an Existing File
Create a file magic4.bin as follows, specifying permission to write and read:

fid = fopen('changing.bin','w+');
fwrite(fid,magic(4));

The original magic(4) matrix is:

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

The file contains 16 bytes, 1 for each value in the matrix. Replace the second
set of four values (the values in the second column of the matrix) with the
vector [44 44 44 44]:

% fseek to the fourth byte after the beginning of the file
fseek(fid, 4, 'bof');

%write the four values
fwrite(fid,[44 44 44 44]);

% read the results from the file into a 4-by-4 matrix
frewind(fid);
newdata = fread(fid, [4,4])

4-28

Export Binary Data with Low-Level I/O

% close the file
fclose(fid);

The newdata in the file changing.bin is:

16 44 3 13
5 44 10 8
9 44 6 12
4 44 15 1

Example — Appending Binary Data to an Existing File
Add the values [55 55 55 55] to the end of the changing.bin file created in
the previous example.

% open the file to append and read
fid = fopen('changing.bin','a+');

% write values at end of file
fwrite(fid,[55 55 55 55]);

% read the results from the file into a 4-by-5 matrix
frewind(fid);
appended = fread(fid, [4,5])

% close the file
fclose(fid);

The appended data in the file changing.bin is:

16 44 3 13 55
5 44 10 8 55
9 44 6 12 55
4 44 15 1 55

Creating a File for Use on a Different System
Different operating systems store information differently at the byte or bit
level:

4-29

4 Low-Level File I/O

• Big-endian systems store bytes starting with the largest address in memory
(that is, they start with the big end).

• Little-endian systems store bytes starting with the smallest address (the
little end).

Windows systems use little-endian byte ordering, and UNIX systems use
big-endian byte ordering.

To create a file for use on an opposite-endian system, specify the byte ordering
for the target system. You can specify the ordering in the call to open the file,
or in the call to write the file.

For example, to create a file named myfile.bin on a big-endian system for
use on a little-endian system, use one (or both) of the following commands:

• Open the file with

fid = fopen('myfile.bin', 'w', 'l')

• Write the file with

fwrite(fid, mydata, precision, 'l')

where 'l' indicates little-endian ordering.

If you are not sure which byte ordering your system uses, call the computer
function:

[cinfo, maxsize, ordering] = computer

The returned ordering is 'L' for little-endian systems, or 'B' for big-endian
systems.

Opening Files with Different Character Encodings
Encoding schemes support the characters required for particular alphabets,
such as those for Japanese or European languages. Common encoding
schemes include US-ASCII or UTF-8.

The encoding scheme determines the number of bytes required to read or
write char values. For example, US-ASCII characters always use 1 byte, but

4-30

Export Binary Data with Low-Level I/O

UTF-8 characters use up to 4 bytes. MATLAB automatically processes the
required number of bytes for each char value based on the specified encoding
scheme. However, if you specify a uchar precision, MATLAB processes each
byte as uint8, regardless of the specified encoding.

If you do not specify an encoding scheme, fopen opens files for processing
using the default encoding for your system. To determine the default, open a
file, and call fopen again with the syntax:

[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions
apply that scheme: fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for
specifying the encoding, see the fopen reference page.

Writing and Reading Complex Numbers
The available precision values for fwrite do not explicitly support complex
numbers. To store complex numbers in a file, separate the real and imaginary
components and write them separately to the file.

After separating the values, write all real components followed by all
imaginary components, or interleave the components. Use the method that
allows you to read the data in your target application.

For example, consider the following set of complex numbers:

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols));

% Divide into real and imaginary components
z_real = real(z);
z_imag = imag(z);

One approach: write all the real components, followed by all the imaginary
components:

adjacent = [z_real z_imag];

4-31

4 Low-Level File I/O

fid = fopen('complex_adj.bin', 'w');
fwrite(fid, adjacent, 'double');
fclose(fid);

% To read these values back in, so that:
% same_real = z_real
% same_imag = z_imag
% same_z = z

fid = fopen('complex_adj.bin');
same_real = fread(fid, [nrows, ncols], 'double');
same_imag = fread(fid, [nrows, ncols], 'double');
fclose(fid);

same_z = complex(same_real, same_imag);

An alternate approach: interleave the real and imaginary components for
each value. fwrite writes values in column order, so build an array that
combines the real and imaginary parts by alternating rows.

% Preallocate the interleaved array
interleaved = zeros(nrows*2, ncols);

% Alternate real and imaginary data
newrow = 1;
for row = 1:nrows

interleaved(newrow,:) = z_real(row,:);
interleaved(newrow + 1,:) = z_imag(row,:);
newrow = newrow + 2;

end

% Write the interleaved values
fid = fopen('complex_int.bin','w');
fwrite(fid, interleaved, 'double');
fclose(fid);

% To read these values back in, so that:
% same_real = z_real
% same_imag = z_imag

4-32

Export Binary Data with Low-Level I/O

% same_z = z
% Use the skip parameter in fread (double = 8 bytes)

fid = fopen('complex_int.bin');
same_real = fread(fid, [nrows, ncols], 'double', 8);

% Return to the first imaginary value in the file
fseek(fid, 8, 'bof');
same_imag = fread(fid, [nrows, ncols], 'double', 8);
fclose(fid);

same_z = complex(same_real, same_imag);

4-33

4 Low-Level File I/O

4-34

5

Images

• “Importing Images” on page 5-2

• “Exporting to Images” on page 5-6

5 Images

Importing Images
To import data into the MATLAB workspace from a graphics file, use the
imread function. Using this function, you can import data from files in many
standard file formats, including the Tagged Image File Format (TIFF),
Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG) formats. For a complete list of
supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the
MATLAB workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of
class uint8. The dimensions of the array depend on the format of the data.
For example, imread uses three dimensions to represent RGB color images:

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading
Image Data and Metadata from TIFF Files” on page 5-3 for more information.

Getting Information about Image Files
If you have a file in a standard graphics format, use the imfinfo function to
get information about its contents. The imfinfo function returns a structure
containing information about the file. The fields in the structure vary with
the file format, but imfinfo always returns some basic information including
the file name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts
Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

5-2

Importing Images

info =

Filename: [1x57 char]
FileModDate: '01-Oct-1996 16:19:44'

FileSize: 27387
Format: 'jpg'

FormatVersion: ''
Width: 600

Height: 650
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {[1x69 char]}

Reading Image Data and Metadata from TIFF Files
While you can use imread to import image data and metadata from TIFF
files, the function does have some limitations. For example, a TIFF file can
contain multiple images and each images can have multiple subimages. While
you can read all the images from a multi-image TIFF file with imread, you
cannot access the subimages. Using the Tiff object, you can read image data,
metadata, and subimages from a TIFF file. When you construct a Tiff object,
it represents your connection with a TIFF file and provides access to many of
the routines in the LibTIFF library.

The following section provides a step-by-step example of using Tiff object
methods and properties to read subimages from a TIFF file. To get the most
out of the Tiff object, you must be familiar with the TIFF specification
and technical notes. View this documentation at LibTIFF - TIFF Library
and Utilities

Reading Subimages from a TIFF File
A TIFF file can contain one or more image file directories (IFD). Each IFD
contains image data and the metadata (tags) associated with the image. Each
IFD can contain one or more subIFDs, which can also contain image data and

5-3

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

5 Images

metadata. These subimages are typically reduced-resolution (thumbnail)
versions of the image data in the IFD containing the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage
from the SubIFD tag. The SubIFD tag contains an array of byte offsets that
point to the subimages. You can then pass the address of the subIFD to the
setSubDirectory method to make the subIFD the current IFD. Most Tiff
object methods operate on the current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff
object constructor. This example uses the TIFF file created in “Creating
Subdirectories in a TIFF File” on page 5-11, which contains one IFD directory
with two subIFDs. The Tiff constructor opens the TIFF file, and makes the
first subIFD in the file the current IFD:

t = Tiff('my_subimage_file.tif','r');

2 Retrieve the locations of subIFDs associated with the current IFD. Use the
getTag method to get the value of the SubIFD tag. This returns an array of
byte offsets that specify the location of subIFDs:

offsets = t.getTag('SubIFD')

3 Navigate to the first subIFD using the setSubDirectory method. Specify
the byte offset of the subIFD as an argument. This call makes the subIFD
the current IFD:

t.setSubDirectory(offsets(1));

4 Read the image data from the current IFD (the first subIFD) as you would
with any other IFD in the file:

subimage_one = t.read();

5 View the first subimage:

imagesc(subimage_one)

6 To view the second subimage, call the setSubDirectory method again,
specifying the byte offset of the second subIFD:

t.setSubDirectory(offsets(2));

5-4

Importing Images

7 Read the image data from the current IFD (the second subIFD) as you would
with any other IFD in the file:

subimage_two = t.read();

8 View the second subimage:

imagesc(subimage_two)

9 Close the Tiff object.

t.close();

5-5

5 Images

Exporting to Images
To export data from the MATLAB workspace using one of the standard
graphics file formats, use the imwrite function. Using this function, you can
export data in formats such as the Tagged Image File Format (TIFF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG).
For a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from
the MATLAB workspace into a file in TIFF format. The class of the output
image written to the file depends on the format specified. For most formats, if
the input array is of class uint8, imwrite outputs the data as 8-bit values.
See the imwrite reference page for details.

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats.
For example, with TIFF file format, you can specify the type of compression
MATLAB uses to store the image. See the imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see
“Exporting Image Data and Metadata to TIFF Files” on page 5-6 for more
information.

Exporting Image Data and Metadata to TIFF Files
While you can use imwrite to export image data and metadata (tags)
to Tagged Image File Format (TIFF) files, the function does have some
limitations. For example, when you want to modify image data or metadata in
the file, you must write the all the data to the file. You cannot write only the
updated portion. Using the Tiff object, you can write portions of the image
data and modify or add individual tags to a TIFF file. When you construct a

5-6

Exporting to Images

Tiff object, it represents your connection with a TIFF file and provides access
to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object
methods and properties to perform some common tasks with TIFF files. To
get the most out of the Tiff object, you must be familiar with the TIFF
specification and technical notes. View this documentation at LibTIFF -
TIFF Library and Utilities

Creating a New TIFF File

1 Create some image data. This example reads image data from a JPEG file
included with MATLAB:

imgdata = imread('ngc6543a.jpg');

2 Create a new TIFF file by constructing a Tiff object, specifying the name of
the new file as an argument. To create a file you must specify either write
mode ('w') or append mode ('a'):

t = Tiff('myfile.tif','w');

When you create a new TIFF file, the Tiff constructor creates a file containing
an image file directory (IFD). A TIFF file uses this IFD to organize all the data
and metadata associated with a particular image. A TIFF file can contain
multiple IFDs. The Tiff object makes the IFD it creates the current IFD. Tiff
object methods operate on the current IFD. You can navigate among IFDs in a
TIFF file and specify which IFD is the current IFD using Tiff object methods.

3 Set required TIFF tags using the setTag method of the Tiff object. These
required tags specify information about the image, such as its length
and width. To break the image data into strips, specify a value for the
RowsPerStrip tag. To break the image data into tiles, specify values for
the TileWidth and TileLength tags. The example creates a structure that
contains tag names and values and passes that to setTag. You also can set
each tag individually.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)
tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8

5-7

http://www.remotesensing.org/libtiff/
http://www.remotesensing.org/libtiff/

5 Images

tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct.Software = 'MATLAB'
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their
values, see “Setting Tag Values” on page 5-13. For example, the Tiff
object supports properties that you can use to set the values of certain
properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write
method of the Tiff object.

t.write(imgdata);

If you wanted to put multiple images into your file, call the writeDirectory
method right after performing this write operation. The writeDirectory
method sets up a new image file directory in the file and makes this new
directory the current directory.

5 Close your connection to the file by closing the Tiff object:

t.close();

6 Test that you created a valid TIFF file by using the imread function to read
the file, and then display the image:

imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not
compressed.

5-8

Exporting to Images

1 Open an existing TIFF file for modification by creating a Tiff object. This
example uses the file created in “Creating a New TIFF File” on page 5-7. The
Tiff constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');

2 Generate some data to write to a strip in the image. This example creates a
three-dimensional array of zeros that is the size of a strip. The code uses the
number of rows in a strip, the width of the image, and the number of samples
per pixel as dimensions. The array is an array of uint8 values.

width = t.getTag('ImageWidth');
height = t.getTag('RowsPerStrip');
numSamples = t.getTag('SamplesPerPixel');
stripData = zeros(height,width,numSamples,'uint8');

If the image data had a tiled layout, you would use the TileWidth and
TileLength tags to specify the dimensions.

3 Write the data to a strip in the file using the writeEncodedStrip method.
Specify the index number that identifies the strip you want to modify. The
example picks strip 18 because it is easier to see the change in the image.

t.writeEncodedStrip(18, stripData);

If the image had a tiled layout, you would use the writeEncodedTile method
to modify the tile.

4 Close your connection to the file by closing the Tiff object.

t.close();

5 Test that you modified a strip of the image in the TIFF file by using the
imread function to read the file, and then display the image.

modified_imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

Note the black strip across the middle of the image.

5-9

5 Images

Modifying TIFF File Metadata (Tags)

1 Open an existing TIFF file for modification using the Tiff object. This
example uses the file created in “Creating a New TIFF File” on page 5-7. The
Tiff constructor returns a handle to a Tiff object.

t = Tiff('myfile.tif','r+');

2 Verify that the file does not contain the Artist tag, using the getTag method.
This code should issue an error message saying that it was unable to retrieve
the tag.

artist_value = t.getTag('Artist');

3 Add the Artist tag using the setTag method.

t.setTag('Artist','Pablo Picasso');

4 Write the new tag data to the TIFF file using the rewriteDirectory method.
Use the rewriteDirectory method when modifying existing metadata in a
file or adding new metadata to a file.

t.rewriteDirectory();

5 Close your connection to the file by closing the Tiff object.

t.close();

6 Test your work by reopening the TIFF file and getting the value of the Artist
tag, using the getTag method.

t = Tiff('myfile.tif', 'r');

t.getTag('Artist')

ans =

Pablo Picasso

t.close();

5-10

Exporting to Images

Creating Subdirectories in a TIFF File

1 Create some image data. This example reads image data from a JPEG file
included with MATLAB. The example then creates two reduced-resolution
(thumbnail) versions of the image data.

imgdata = imread('ngc6543a.jpg');
%
% Reduce number of pixels by a half.
img_half = imgdata(1:2:end,1:2:end,:);
%
% Reduce number of pixels by a third.
img_third = imgdata(1:3:end,1:3:end,:);

2 Create a new TIFF file by constructing a Tiff object and specifying the name
of the new file as an argument. To create a file you must specify either write
mode ('w') or append mode ('a'). The Tiff constructor returns a handle
to a Tiff object.

t = Tiff('my_subimage_file.tif','w');

3 Set required TIFF tags using the setTag method of the Tiff object. These
required tags specify information about the image, such as its length
and width. To break the image data into strips, specify a value for the
RowsPerStrip tag. To break the image data into tiles, use the TileWidth and
TileLength tags. The example creates a structure that contains tag names
and values and passes that to setTag. You can also set each tag individually.

To create subdirectories, you must set the SubIFD tag, specifying the number
of subdirectories you want to create. Note that the number you specify isn’t
the value of the SubIFD tag. The number tells the Tiff software to create a
SubIFD that points to two subdirectories. The actual value of the SubIFD tag
will be the byte offsets of the two subdirectories.

tagstruct.ImageLength = size(imgdata,1)
tagstruct.ImageWidth = size(imgdata,2)
tagstruct.Photometric = Tiff.Photometric.RGB
tagstruct.BitsPerSample = 8
tagstruct.SamplesPerPixel = 3
tagstruct.RowsPerStrip = 16
tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky

5-11

5 Images

tagstruct.Software = 'MATLAB'
tagstruct.SubIFD = 2 % required to create subdirectories
t.setTag(tagstruct)

For information about supported TIFF tags and how to set their
values, see “Setting Tag Values” on page 5-13. For example, the Tiff
object supports properties that you can use to set the values of certain
properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

4 Write the image data and metadata to the current directory using the write
method of the Tiff object.

t.write(imgdata);

5 Set up the first subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and make the new directory
the current directory. Because you specified that you wanted to create two
subdirectories, writeDirectory sets up a subdirectory.

t.writeDirectory();

6 Set required tags, just as you did for the regular directory. According to the
LibTIFF API, a subdirectory cannot contain a SubIFD tag.

tagstruct2.ImageLength = size(img_half,1)
tagstruct2.ImageWidth = size(img_half,2)
tagstruct2.Photometric = Tiff.Photometric.RGB
tagstruct2.BitsPerSample = 8
tagstruct2.SamplesPerPixel = 3
tagstruct2.RowsPerStrip = 16
tagstruct2.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct2.Software = 'MATLAB'
t.setTag(tagstruct2)

7 Write the image data and metadata to the subdirectory using the write
method of the Tiff object.

t.write(img_half);

5-12

Exporting to Images

8 Set up the second subdirectory by calling the writeDirectory method. The
writeDirectory method sets up the subdirectory and makes it the current
directory.

t.writeDirectory();

9 Set required tags, just as you would for any directory. According to the
LibTIFF API, a subdirectory cannot contain a SubIFD tag.

tagstruct3.ImageLength = size(img_third,1)
tagstruct3.ImageWidth = size(img_third,2)
tagstruct3.Photometric = Tiff.Photometric.RGB
tagstruct3.BitsPerSample = 8
tagstruct3.SamplesPerPixel = 3
tagstruct3.RowsPerStrip = 16
tagstruct3.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky
tagstruct3.Software = 'MATLAB'
t.setTag(tagstruct3)

10 Write the image data and metadata to the subdirectory using the write
method of the Tiff object:

t.write(img_third);

11 Close your connection to the file by closing the Tiff object:

t.close();

Setting Tag Values
The following table lists all the TIFF tags that the Tiff object supports and
includes information about their MATLAB class and size. For certain tags,
the table also indicates the set of values that the Tiff object supports, which
is a subset of all the possible values defined by the TIFF specification. You
can use Tiff object properties to specify the supported values for these tags.
For example, use Tiff.Compression.JPEG to specify JPEG compression. See
the Tiff class reference page for a full list of properties.

5-13

5 Images

Table 1: Supported TIFF Tags

TIFF Tag Class Size Supported
Values

Notes

Artist char 1xN

BitsPerSample double 1x1 1,8,16,32,64 See Table 2

ColorMap double 256x3 Values should
be normalized
between 0–1.
Stored internally
as uint16 values.

Photometric must
be Palette

Compression double 1x1 None: 1
CCITTRLE: 2
CCITTFax3: 3
CCITTFax4: 4
LZW: 5
JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8

See Table 3.

Copyright char 1xN

DateTime char 1x19 Return value is
padded to 19 chars
if required.

DocumentName char 1xN

DotRange double 1x2 Photometric must
be Separated

ExtraSamples double 1xN Unspecified: 0
AssociatedAlpha:
1
UnassociatedAlpha:
2

See Table 4.

FillOrder double 1x1

GeoAsciiParamsTag char 1xN

5-14

Exporting to Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

GeoDoubleParamsTag double 1xN

GeoKeyDirectoryTag double Nx4

Group3Options double 1x1 Compression must
be CCITTFax3

Group4Options double 1x1 Compression must
be CCITTFax4

HalfToneHints double 1x2

HostComputer char 1xn

ICCProfile uint8 1xn

ImageDescription char 1xn

ImageLength double 1x1

ImageWidth double 1x1

InkNames char
cell
array

1x
NumInks

Photometric must
be Separated

InkSet double 1x1 CMYK: 1
MultiInk: 2

Photometric must
be Separated

JPEGQuality double 1x1 A value between 1
and 100

Make char 1xn

MaxSampleValue double 1x1 0–65,535

MinSampleValue double 1x1 0–65,535

Model char 1xN

ModelPixelScaleTag double 1x3

ModelTiepointTag double Nx6

ModelTransformationMatrixTag double 1x16

5-15

5 Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

NumberOfInks double 1x1 Must be equal to
SamplesPerPixel

Orientation double 1x1 TopLeft: 1
TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8

PageName char 1xN

PageNumber double 1x2

Photometric double 1x1 MinIsWhite: 0
MinIsBlack: 1
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10

See Table 2.

Photoshop uint8 1xN

PlanarConfiguration double 1x1 Chunky: 1
Separate: 2

PrimaryChromaticities double 1x6

ReferenceBlackWhite double 1x6

ResolutionUnit double 1x1

5-16

Exporting to Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

RICHTIFFIPTC uint8 1xN

RowsPerStrip double 1x1

SampleFormat double 1x1 Uint: 1
Int: 2
IEEEFP: 3

See Table 2

SamplesPerPixel double 1x1

SMaxSampleValue double 1x1 Range of
MATLAB data
type specified for
Image data

SMinSampleValue double 1x1 Range of
MATLAB data
type specified for
Image data

Software char 1xN

StripByteCounts double 1xN Read-only

StripOffsets double 1xN Read-only

SubFileType double 1x1 Default : 0
ReducedImage: 1
Page: 2
Mask: 4

SubIFD double 1x1

TargetPrinter char 1xN

Thresholding double 1x1 BiLevel: 1
HalfTone: 2
ErrorDiffuse: 3

Photometric can be
either: MinIsWhite
MinIsBlack

5-17

5 Images

Table 1: Supported TIFF Tags (Continued)

TIFF Tag Class Size Supported
Values

Notes

TileByteCounts double 1xN Read-only

TileLength double 1x1 Must be amultiple
of 16

TileOffsets double 1xN Read-only

TileWidth double 1x1 Must be amultiple
of 16

TransferFunction double See
note1

Each value
should be within
0–2^16-1

SamplePerPixel
can be either 1 or 3

WhitePoint double 1x2 Photometric can be:
RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

XMP char 1xn N>5

XPostion double 1x1

XResolution double 1x1

YCbCrCoefficents double 1x3 Photometric must
be YCbCr

YCbCrPositioning double 1x1 Centered: 1
Cosited: 2

Photometric must
be YCbCr

YCbCrSubSampling double 1x2 Photometric must
be YCbCr

YPosition double 1x1

YResolution double 1x1

ZipQuality double 1x1 Value between 1
and 9

5-18

Exporting to Images

1Size is 1x2^BitsPerSample or3x2^BitsPerSample.

Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type

1 Uint logical

8 Uint, Int uint8, int8

16 Uint, Int uint16, int16

32 Uint, Int, IEEEFP uint32, int32, single

64 IEEEFP double

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

BitsPerSample Values

Photometric
Values

1 8 16 32 64

MinIsWhite Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

MinIsBlack Uint Uint/Int Uint
Int

Uint
Int
IEEEFP

IEEEFP

RGB Uint Uint Uint
IEEEFP

IEEEFP

Pallette Uint Uint

Mask Uint

Separated Uint Uint Uint
IEEEFP

IEEEFP

YCbCr Uint Uint Uint
IEEEFP

IEEEFP

CIELab Uint Uint

ICCLab Uint Uint

ITULab Uint Uint

5-19

5 Images

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

BitsPerSample Values

Compression
Values

1 8 16 32 64

None Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

CCITTRLE Uint

CCITTFax3 Uint

CCITTFax4 Uint

LZW Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

JPEG Uint
Int

CCITTRLEW Uint

PackBits Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

Deflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

AdobeDeflate Uint Uint
Int

Uint
Int

Uint
Int
IEEEFP

IEEEFP

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel1

MinIsWhite 1+

MinIsBlack 1+

RGB 3+

5-20

Exporting to Images

Table 5: Valid SamplesPerPixel Values for Photometric Settings
(Continued)

Photometric Values SamplesPerPixel1

Pallette 1

Mask 1

Separated 1+

YCbCr 3

CIELab 3+

ICCLab 3+

ITULab 3+

1 When you specify more than the expected number of samples per pixel (n+),
you must set the ExtraSamples tag accordingly.

5-21

5 Images

5-22

6

Scientific Data

• “Importing Common Data File Format (CDF) Files” on page 6-2

• “Exporting to Common Data File Format (CDF) Files” on page 6-10

• “Importing Network Common Data Form (NetCDF) Files and OPeNDAP
Data” on page 6-12

• “Exporting to Network Common Data Form (NetCDF) Files” on page 6-21

• “Importing Flexible Image Transport System (FITS) Files” on page 6-30

• “Importing Hierarchical Data Format (HDF5) Files” on page 6-32

• “Exporting to Hierarchical Data Format (HDF5) Files” on page 6-40

• “Importing Hierarchical Data Format (HDF4) Files” on page 6-52

• “Exporting to Hierarchical Data Format (HDF4) Files” on page 6-82

6 Scientific Data

Importing Common Data File Format (CDF) Files

In this section...

“Overview” on page 6-2

“High-Level CDF Import Functions” on page 6-2

“Using the CDF Library Low-Level Functions to Import Data” on page 6-6

Overview
CDF was created by the National Space Science Data Center (NSSDC) to
provide a self-describing data storage and manipulation format that matches
the structure of scientific data and applications (i.e., statistical and numerical
methods, visualization, and management). For more information about this
format, see the CDF Web site.

MATLAB provides two ways to access CDF files: a set of high-level functions
and a package of low-level functions that provide direct access to the routines
in the CDF C API library. The high level functions provide a simpler interface
to accessing CDF files. However, if you require more control over the import
operation, such as data subsetting for large data sets, use the low-level
functions. The following sections provide more information.

• “High-Level CDF Import Functions” on page 6-2

• “Using the CDF Library Low-Level Functions to Import Data” on page 6-6

High-Level CDF Import Functions
MATLAB includes high-level functions that you can use to get information
about the contents of a Common Data Format (CDF) file and then read data
from the file. The following sections provide more information.

• “Getting Information about the Contents of CDF File” on page 6-3

• “Reading Data from a CDF File” on page 6-4

• “Speeding Up Read Operations” on page 6-4

• “Representing CDF Time Values” on page 6-6

6-2

http://cdf.gsfc.nasa.gov/

Importing Common Data File Format (CDF) Files

Getting Information about the Contents of CDF File
To get information about the contents of a CDF file, such as the names of
variables in the CDF file, use the cdfinfo function. The cdfinfo function
returns a structure containing general information about the file and detailed
information about the variables and attributes in the file.

In this example, the Variables field indicates the number of variables in the
file. Taking a closer look at the contents of this field, you can see that the first
variable, Time, is made up of 24 records containing CDF epoch data. The next
two variables, Longitude and Latitude, have only one associated record
containing int8 data. For details about how to interpret the data returned
in the Variables field, see cdfinfo.

Note Because cdfinfo creates temporary files, make sure that your current
working directory is writable before attempting to use the function.

info = cdfinfo('example.cdf')

info =

Filename: 'example.cdf'

FileModDate: '19-May-2010 12:03:11'

FileSize: 1310

Format: 'CDF'

FormatVersion: '2.7.0'

FileSettings: [1x1 struct]

Subfiles: {}

Variables: {6x6 cell}

GlobalAttributes: [1x1 struct]

VariableAttributes: [1x1 struct]

vars = info.Variables

vars =

'Time' [1x2 double] [24] 'epoch' 'T/' 'Full'

'Longitude' [1x2 double] [1] 'int8' 'F/FT' 'Full'

'Latitude' [1x2 double] [1] 'int8' 'F/TF' 'Full'

6-3

6 Scientific Data

'Data' [1x3 double] [1] 'double' 'T/TTT' 'Full'

'multidimensional' [1x4 double] [1] 'uint8' 'T/TTTT' 'Full'

'Temperature' [1x2 double] [10] 'int16' 'T/TT' 'Full'

Reading Data from a CDF File
To read all of the data in the CDF file, use the cdfread function. The function
returns the data in a cell array. The columns of data correspond to the
variables; the rows correspond to the records associated with a variable.

data = cdfread('example.cdf');

whos data
Name Size Bytes Class Attributes

data 24x6 16512 cell

To read the data associated with one or more particular variables, use the
'Variable' parameter. Specify the names of the variables as text strings in a
cell array. Variable names are case sensitive. The following example reads
the Longitude and Latitude variables from the file.

var_long_lat = cdfread('example.cdf','Variable',{'Longitude','Latitude'});

whos var_long_lat

Name Size Bytes Class Attributes

var_long_lat 1x2 128 cell

Speeding Up Read Operations
The cdfread function offers two ways to speed up read operations when
working with large data sets:

• Reducing the number of elements in the returned cell array

• Returning CDF epoch values as MATLAB serial date numbers rather than
as MATLAB cdfepoch objects

6-4

Importing Common Data File Format (CDF) Files

To reduce the number of elements in the returned cell array, specify the
'CombineRecords' parameter. By default, cdfread creates a cell array with
a separate element for every variable and every record in each variable,
padding the records dimension to create a rectangular cell array. For
example, reading all the data from the example file produces an output
cell array, 24-by-6, where the columns represent variables and the rows
represent the records for each variable. When you set the 'CombineRecords'
parameter to true, cdfread creates a separate element for each variable
but saves time by putting all the records associated with a variable in a
single cell array element. Thus, reading the data from the example file with
'CombineRecords' set to true produces a 1-by-5 cell array, as shown below.

data_combined = cdfread('example.cdf','CombineRecords',true);

whos

Name Size Bytes Class Attributes

data 24x6 16512 cell

data_combined 1x6 2544 cell

When combining records, note that the dimensions of the data in the cell
change. For example, if a variable has 20 records, each of which is a scalar
value, the data in the cell array for the combined element contains a 20-by-1
vector of values. If each record is a 3-by-4 array, the cell array element
contains a 20-by-3-by-4 array. For combined data, cdfread adds a dimension
to the data, the first dimension, that is the index into the records.

Another way to speed up read operations is to read CDF epoch values as
MATLAB serial date numbers. By default, cdfread creates a MATLAB
cdfepoch object for each CDF epoch value in the file. If you specify the
'ConvertEpochToDatenum' parameter, setting it to true, cdfread returns
CDF epoch values as MATLAB serial date numbers. For more information
about working with MATLAB cdfepoch objects, see “Representing CDF Time
Values” on page 6-6.

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);

whos

Name Size Bytes Class Attributes

6-5

6 Scientific Data

data 24x6 16512 cell

data_combined 1x6 2544 cell

data_datenums 24x6 13536 cell

Representing CDF Time Values
CDF represents time differently than MATLAB. CDF represents date and
time as the number of milliseconds since 1-Jan-0000. This is called an epoch
in CDF terminology. MATLAB represents date and time as a serial date
number, which is the number of days since 0-Jan-0000. To represent CDF
dates, MATLAB uses an object called a CDF epoch object. To access the time
information in a CDF object, use the object’s todatenum method.

For example, this code extracts the date information from a CDF epoch object:

1 Extract the date information from the CDF epoch object returned in the cell
array data (see “Importing Common Data File Format (CDF) Files” on page
6-2). Use the todatenum method of the CDF epoch object to get the date
information, which is returned as a MATLAB serial date number.

m_date = todatenum(data{1});

2 View the MATLAB serial date number as a string.

datestr(m_date)
ans =

01-Jan-2001

Using the CDF Library Low-Level Functions to Import
Data
To import (read) data from a Common Data Format (CDF) file, you can use
the MATLAB low-level CDF functions. The MATLAB functions correspond
to dozens of routines in the CDF C API library. For a complete list of all the
MATLAB low-level CDF functions, see cdflib.

This section does not attempt to describe all features of the CDF library
or explain basic CDF programming concepts. To use the MATLAB CDF
low-level functions effectively, you must be familiar with the CDF C interface.
Documentation about CDF, version 3.3.0, is available at the CDF Web site.

6-6

http://cdf.gsfc.nasa.gov/

Importing Common Data File Format (CDF) Files

The following example shows how to use low-level functions to read data
from a CDF file.

1 Open the sample CDF file. For information about creating a new CDF file,
see “Exporting to Common Data File Format (CDF) Files” on page 6-10.

cdfid = cdflib.open('example.cdf');

2 Get some information about the contents of the file, such as the number
of variables in the file, the number of global attributes, and the number
of attributes with variable scope.

info = cdflib.inquire(cdfid)

info =

encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: 23
numVars: 6

numvAttrs: 1
numgAttrs: 3

3 Get information about the individual variables in the file. Variable ID
numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info =

name: 'Time'
datatype: 'cdf_epoch'

numElements: 1
dims: []

recVariance: 1
dimVariance: []

info = cdflib.inquireVar(cdfid,1)

info =

6-7

6 Scientific Data

name: 'Longitude'
datatype: 'cdf_int1'

numElements: 1
dims: [2 2]

recVariance: 0
dimVariance: [1 0]

4 Read the data in a variable into the workspace. The first variable contains
CDF Epoch time values. The low-level interface returns these as double
values.

data_time = cdflib.getVarRecordData(cdfid,0,0)

data_time =

6.3146e+013

% convert the time value to a time vector
timeVec = cdflib.epochBreakdown(data_time)

timeVec =

2001
1
1
0
0
0
0

5 Read a global attribute from the file.

% Determine which attributes are global.
info = cdflib.inquireAttr(cdfid,0)

info =

name: 'SampleAttribute'
scope: 'GLOBAL_SCOPE'

maxgEntry: 4
maxEntry: -1

6-8

Importing Common Data File Format (CDF) Files

% Read the value of the attribute. Note you must use the
% cdflib.getAttrgEntry function for global attributes.
value = cdflib.getAttrgEntry(cdfid,0,0)

value =

This is a sample entry.

6 Close the CDF file.

cdflib.close(cdfid);

6-9

6 Scientific Data

Exporting to Common Data File Format (CDF) Files
The Common Data Format (CDF) was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). For more information about this format, see the CDF Web site.

To export (write) data from a Common Data Format (CDF) file, use the
MATLAB low-level CDF functions. The MATLAB functions correspond to
dozens of routines in the CDF C API library. For a complete list of all the
MATLAB low-level CDF functions, see cdflib.

This section does not attempt to describe all features of the CDF library
or explain basic CDF programming concepts. To use the MATLAB CDF
low-level functions effectively, you must be familiar with the CDF C interface.
Documentation about CDF, version 3.3.0, is available at the CDF Web site.

The following example shows how to use low-level functions to write data
to a CDF file.

1 Create a new CDF file. For information about opening an existing CDF
file, see “Using the CDF Library Low-Level Functions to Import Data”
on page 6-6.

cdfid = cdflib.create('my_file.cdf');

2 Create some variables in the CDF file.

time_id = cdflib.createVar(cdfid,'Time','cdf_int4',1,[],true,[]);

lat_id = cdflib.createVar(cdfid,'Latitude','cdf_int2',1,181,true,true);

dimSizes = [20 10];

dimVarys = [true true];

image_id = cdflib.createVar(cdfid,'Image','cdf_int4',1,dimSizes,true,[true true]);

3 Write data to the variables.

% Write time data

6-10

http://cdf.gsfc.nasa.gov/
http://cdf.gsfc.nasa.gov/

Exporting to Common Data File Format (CDF) Files

cdflib.putVarRecordData(cdfid,time_id,0,int32(23));

cdflib.putVarRecordData(cdfid,time_id,1,int32(24));

% Write the latitude data

data = int16([-90:90]);

recspec = [0 1 1];

dimspec = { 0 181 1 };

cdflib.hyperPutVarData(cdfid,lat_id,recspec,dimspec,data);

% Write data for the image zVariable

recspec = [0 3 1];

dimspec = { [0 0], [20 10], [1 1] };

data = reshape(int32([0:599]), [20 10 3]);

cdflib.hyperPutVarData(cdfid,image_id,recspec,dimspec,data);

4 Create a global attribute in the CDF file and write data to the attribute..

titleAttrNum = cdflib.createAttr(cdfid,'TITLE','global_scope');

% Write the global attribute entries

cdflib.putAttrEntry(cdfid,titleAttrNum,0,'CDF_CHAR','cdf Title');

cdflib.putAttrEntry(cdfid,titleAttrNum,1,'CDF_CHAR','Author');

5 Create attributes associated with variables in the CDF file and write data
to the attribute.

fieldAttrNum = cdflib.createAttr(cdfid,'FIELDNAM','variable_scope');

unitsAttrNum = cdflib.createAttr(cdfid,'UNITS','variable_scope');

% Write the time variable attributes

cdflib.putAttrEntry(cdfid,fieldAttrNum,time_id,'CDF_CHAR','Time of observation');

cdflib.putAttrEntry(cdfid,unitsAttrNum,time_id,'CDF_CHAR','Hours');

6 Close the CDF file.

cdflib.close(cdfid);

6-11

6 Scientific Data

Importing Network Common Data Form (NetCDF) Files
and OPeNDAP Data

In this section...

“Overview” on page 6-12

“Using the MATLAB High-Level NetCDF Functions to Import Data” on
page 6-13

“Using the MATLAB Low-Level NetCDF Functions to Import Data” on
page 6-15

“Troubleshooting OPeNDAP Connections” on page 6-20

Overview
Network Common Data Form (NetCDF) is a set of software libraries and
machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data. NetCDF is used by a wide range of
engineering and scientific fields that want a standard way to store data so
that it can be shared. For more information, read the NetCDF documentation
available at the Unidata Web site.

MATLAB provides two methods to import data from a NetCDF file or from
an OPeNDAP source:

• High-level functions that simplify the process of importing data

• Low-level functions that enable more complete control over the importing
process, by providing access to the routines in the NetCDF C library

Note For information about importing to Common Data Format (CDF) files,
which have a completely separate, incompatible format, see “Importing
Common Data File Format (CDF) Files” on page 6-2.

6-12

http://www.unidata.ucar.edu/software/netcdf/

Importing Network Common Data Form (NetCDF) Files and OPeNDAP Data

Using the MATLAB High-Level NetCDF Functions to
Import Data
MATLAB includes several functions that you can use to examine the contents
of a NetCDF file and import data from the file into the MATLAB workspace.

• ncdisp— View the contents of a NetCDF file or OPeNDAP URL

• ncinfo— Create a structure that contains all the metadata that defines a
NetCDF file

• ncread— Read data from a variable in a NetCDF file or OPeNDAP URL

• ncreadatt— Read data from an attribute associated with a variable in a
NetCDF file or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which
include examples. The following section illustrates how to use these functions
to perform a common task: finding all the unlimited dimensions in a NetCDF
file.

Finding All Unlimited Dimensions in a NetCDF File
This example shows how to find all unlimited dimensions in an existing
NetCDF file, visually and programmatically.

1 To determine which dimensions in a NetCDF file are unlimited, display the
contents of the example NetCDF file, using ncdisp. The ncdisp function
identifies unlimited dimensions with the label UNLIMITED.

Source:
\\matlabroot\toolbox\matlab\demos\example.nc

Format:
netcdf4

Global Attributes:
creation_date = '29-Mar-2010'

Dimensions:
x = 50
y = 50
z = 5

.

.

6-13

6 Scientific Data

.
Groups:

/grid2/
Attributes:

description = 'This is another group attribute.'
Dimensions:

x = 360
y = 180
time = 0 (UNLIMITED)

Variables:
temp

Size: []
Dimensions: x,y,time
Datatype: int16

2 To determine all unlimited dimensions programmatically, first get
information about the file using ncinfo. This example gets information
about a particular group in the file.

ginfo = ncinfo('example.nc','/grid2/');

3 Get a vector of the Boolean values that indicate, for this group, which
dimension is unlimited.

unlimDims = [finfo.Dimensions.Unlimited]

unlimDims =

0 0 1

4 Use this vector to display the unlimited dimension.

disp(ginfo.Dimensions(unlimDims))
Name: 'time'

Length: 0
Unlimited: 1

6-14

Importing Network Common Data Form (NetCDF) Files and OPeNDAP Data

Using the MATLAB Low-Level NetCDF Functions to
Import Data
MATLAB provides access to the routines in the NetCDF C library that you
can use to read data from NetCDF files and write data to NetCDF files.
MATLAB provides this access through a set of MATLAB functions that
correspond to the functions in the NetCDF C library. MATLAB groups the
functions into a package, called netcdf. To call one of the functions in the
package, you must specify the package name. For a complete list of all the
functions, see netcdf.

This section does not describe all features of the NetCDF library or explain
basic NetCDF programming concepts. To use the MATLAB NetCDF functions
effectively, you should be familiar with the information about NetCDF
contained in the NetCDF C Interface Guide.

Mapping NetCDF API Syntax to MATLAB Function Syntax
For the most part, the MATLAB NetCDF functions correspond directly to
routines in the NetCDF C library. For example, the MATLAB function
netcdf.open corresponds to the NetCDF library routine nc_open. In some
cases, one MATLAB function corresponds to a group of NetCDF library
functions. For example, instead of creating MATLAB versions of every
NetCDF library nc_put_att_type function, where type represents a data
type, MATLAB uses one function, netcdf.putAtt, to handle all supported
data types.

The syntax of the MATLAB functions is similar to the NetCDF library
routines, with some exceptions. For example, the NetCDF C library routines
use input parameters to return data, while their MATLAB counterparts
use one or more return values. For example, the following is the function
signature of the nc_open routine in the NetCDF library. Note how the
NetCDF file identifier is returned in the ncidp argument.

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

The following shows the signature of the corresponding MATLAB function,
netcdf.open. Like its NetCDF C library counterpart, the MATLAB NetCDF
function accepts a character string that specifies the file name and a
constant that specifies the access mode. Note, however, that the MATLAB
netcdf.open function returns the file identifier, ncid, as a return value.

6-15

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/

6 Scientific Data

ncid = netcdf.open(filename, mode)

To see a list of all the functions in the MATLAB NetCDF package, see the
netcdf reference page.

Exploring the Contents of a NetCDF File
This example shows how to use the MATLAB NetCDF functions to explore the
contents of a NetCDF file. The section uses the example NetCDF file included
with MATLAB, example.nc, as an illustration. For an example of reading
data from a NetCDF file, see “Reading Data from a NetCDF File” on page 6-19

1 Open the NetCDF file using the netcdf.open function. This function
returns an identifier that you use thereafter to refer to the file. The
example opens the file for read-only access, but you can specify other access
modes. For more information about modes, see netcdf.open.

ncid = netcdf.open('example.nc','NC_NOWRITE');

2 Explore the contents of the file using the netcdf.inq function. This
function returns the number of dimensions, variables, and global attributes
in the file, and returns the identifier of the unlimited dimension in the file.
(An unlimited dimension can grow.)

[ndims,nvars,natts,unlimdimID]= netcdf.inq(ncid)
ndims =

3

nvars =

3

natts =

1

unlimdimID =

6-16

Importing Network Common Data Form (NetCDF) Files and OPeNDAP Data

-1

3 Get more information about the dimensions, variables, and global
attributes in the file by using NetCDF inquiry functions. For example,
to get information about the global attribute, first get the name of the
attribute, using the netcdf.inqAttName function. After you get the name,
'creation_date' in this case, you can use the netcdf.inqAtt function to
get information about the data type and length of the attribute.

To get the name of an attribute, you must specify the ID of the variable
the attribute is associated with and the attribute number. To access a
global attribute, which isn’t associated with a particular variable, use
the constant 'NC_GLOBAL' as the variable ID. The attribute number is
a zero-based index that identifies the attribute. For example, the first
attribute has the index value 0, and so on.

global_att_name = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

global_att_name =

creation_date

[xtype attlen] = netcdf.inqAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

xtype =

2

attlen =

11

4 Get the value of the attribute, using the netcdf.getAtt function.

global_att_value = netcdf.getAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

global_att_value =

29-Mar-2010

6-17

6 Scientific Data

5 Get information about the dimensions defined in the file through a series
of calls to netcdf.inqDim. This function returns the name and length of
the dimension. The netcdf.inqDim function requires the dimension ID,
which is a zero-based index that identifies the dimensions. For example,
the first dimension has the index value 0, and so on.

[dimname, dimlen] = netcdf.inqDim(ncid,0)

dimname =

x

dimlen =

50

6 Get information about the variables in the file through a series of calls to
netcdf.inqVar. This function returns the name, data type, dimension
ID, and the number of attributes associated with the variable. The
netcdf.inqVar function requires the variable ID, which is a zero-based
index that identifies the variables. For example, the first variable has
the index value 0, and so on.

[varname, vartype, dimids, natts] = netcdf.inqVar(ncid,0)

varname =

avagadros_number

vartype =

6

dimids =

[]

natts =

6-18

Importing Network Common Data Form (NetCDF) Files and OPeNDAP Data

1

The data type information returned in vartype is the numeric value of
the NetCDF data type constants, such as, NC_INT and NC_BYTE. See the
NetCDF documentation for information about these constants.

Reading Data from a NetCDF File
After you understand the contents of a NetCDF file, by using the inquiry
functions, you can retrieve the data from the variables and attributes in the
file. To read the data associated with the variable avagadros_number in the
example file, use the netcdf.getVar function. The following example uses
the NetCDF file identifier returned in the previous section, “Exploring the
Contents of a NetCDF File” on page 6-16. The variable ID is a zero-based
index that identifies the variables. For example, the first variable has the
index value 0, and so on. (To learn how to write data to a NetCDF file, see
“Exporting (Writing) Data to a NetCDF File” on page 6-26.)

A_number = netcdf.getVar(ncid,0)

A_number =

6.0221e+023

The NetCDF functions automatically choose the MATLAB class that best
matches the NetCDF data type, but you can also specify the class of the return
data by using an optional argument to netcdf.getVar. The following table
shows the default mapping. For more information about NetCDF data types,
see the NetCDF C Interface Guide.

NetCDF Data Type MATLAB Class Notes

NC_BYTE int8 or uint8 NetCDF interprets byte data as
either signed or unsigned.

NC_CHAR char

NC_SHORT int16

NC_INT int32

6-19

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/

6 Scientific Data

NetCDF Data Type MATLAB Class Notes

NC_FLOAT single

NC_DOUBLE double

Troubleshooting OPeNDAP Connections
If you have trouble reading OPeNDAP data, consider the following:

• OPeNDAP data is being pulled over the network from a server on the
Internet. Pulling large data could be slow. Speed and reliability depends
on their network connection

• OPeNDAP capability does not support proxy servers or any kind of
authentication

• Failure to open an OPeNDAP link could have multiple causes:

- Invalid URL

- Local machine firewall/network firewall does not allow any external
connections.

- Local machine firewall/network firewall does not allow external
connections on the OPeNDAP protocol.

- Remote server is down.

- Remote server will not serve the amount of data being requested. In this
case, you can read data in subsets or chunks.

- Remote server is incorrectly configured.

6-20

Exporting to Network Common Data Form (NetCDF) Files

Exporting to Network Common Data Form (NetCDF) Files

In this section...

“Overview” on page 6-21

“Using the NetCDF High-Level Functions to Export Data” on page 6-21

“Using the NetCDF Low-Level Functions to Export Data” on page 6-26

Overview
Network Common Data Form (NetCDF) is a set of software libraries and
machine-independent data formats that support the creation, access, and
sharing of array-oriented scientific data. NetCDF is used by a wide range of
engineering and scientific fields that want a standard way to store data so
that it can be shared. For more information, read the NetCDF documentation
available at the Unidata Web site.

MATLAB provides two methods to export data from the workspace into a
NetCDF file:

• High-level functions that make it easy to export data

• Low-level functions that provide access to routines in the NetCDF C library

Note For information about exporting to Common Data Format (CDF) files,
which have a completely separate and incompatible format, see “Exporting to
Network Common Data Form (NetCDF) Files” on page 6-21.

Using the NetCDF High-Level Functions to Export Data
MATLAB includes several functions that you can use to export data from
the file into the MATLAB workspace.

• nccreate— Create a variable in a NetCDF file. If the file does not exist,
nccreate creates it.

• ncwrite — Write data to a NetCDF file

6-21

http://www.unidata.ucar.edu/software/netcdf/

6 Scientific Data

• ncwriteatt— Write data to an attribute associated with a variable in a
NetCDF file or with the file itself (global attribute)

• ncwriteschema— Add a NetCDF schema to a NetCDF file, or create a new
file using the schema as a template.

For details about how to use these functions, see their reference pages. These
pages include examples. For information about importing (reading) data
from a NetCDF file, see “Using the MATLAB High-Level NetCDF Functions
to Import Data” on page 6-13. The following examples illustrate how to use
these functions to perform several common scenarios:

• “Creating a New NetCDF File from an Existing File or Template” on page
6-22

• “Converting Between NetCDF File Formats” on page 6-23

• “Merging Two NetCDF Files” on page 6-24

Creating a New NetCDF File from an Existing File or Template
This example describes how to create a new file based on an existing file
(or template).

1 Read the variable, dimension, and group definitions from the file using
ncinfo. This information defines the file’s schema.

finfo = ncinfo('example.nc');

2 Create a new NetCDF file that uses this schema, using ncwriteschema.

ncwriteschema('mynewfile.nc',finfo);

3 View the existing file and the new file, using ncdisp. You can see how the
new file contains the same set of dimensions, variables, and groups as
the existing file.

Note A schema defines the structure of the file but does not contain any
of the data that was in the original file.

6-22

Exporting to Network Common Data Form (NetCDF) Files

ncdisp('example.nc')
ncdisp('mynewfile.nc')

Converting Between NetCDF File Formats
This example shows how to convert an existing file from one format to another.

Note When you convert a file’s format using ncwriteschema, you might
get a warning message, if the original file format includes fields that
are not supported by the new format. For example, the netcdf4 format
supports fill values but the NetCDF classic format does not. In these cases,
ncwriteschema still creates the file, but leaves out the field that is undefined
in the new format.

1 Create a new file containing one variable, using the nccreate function.

nccreate('ex1.nc','myvar');

2 Determine the format of the new file, using ncinfo.

finfo = ncinfo('ex1.nc');
file_fmt = finfo.Format

file_fmt =

netcdf4_classic

3 Change the value of the Format field in the finfo structure to another
supported NetCDF format. You use the finfo structure to specify the
new format.

finfo.Format = 'netcdf4';

4 Create a new version of the file that uses the new format, using the
ncwriteschema function.

finfo = ncwriteschema('newfile.nc',finfo);
finfo = ncinfo('newfile.nc');
new_fmt = finfo.Format

6-23

6 Scientific Data

file_fmt =

netcdf4

Note The new file contains the variable and dimension definitions of the
original file, but does not contain the data. You must write the data to
the file.

Merging Two NetCDF Files
This example shows how to merge two NetCDF files.

Note The combined file contains the variable and dimension definitions of the
files that are combined, but does not contain the data in these original files.

1 Create a file, define a variable in the file, and write data to the variable.

nccreate('ex1.nc','myvar');
ncwrite('ex1.nc','myvar',55)
ncdisp('ex1.nc')

2 Create a second file, with another variable, and write data to it.

nccreate('ex2.nc','myvar2');
ncwrite('ex2.nc','myvar2',99)
ncdisp('ex2.nc')

3 Get the schema of each of the newly created files, using ncinfo.

finfo1 = ncinfo('ex1.nc')

finfo1 =

Filename: 'H:\file1.nc'
Name: '/'

Dimensions: []
Variables: [1x1 struct]

6-24

Exporting to Network Common Data Form (NetCDF) Files

Attributes: []
Groups: []
Format: 'netcdf4_classic'

finfo2 = ncinfo('file2.nc')

finfo2 =

Filename: 'H:\file2.nc'
Name: '/'

Dimensions: []
Variables: [1x1 struct]

Attributes: []
Groups: []
Format: 'netcdf4_classic'

4 Create a new NetCDF file that uses the schema of the first example file,
using ncwriteschema.

ncwriteschema('combined_file.nc',finfo1);

ncdisp('combined_file.nc')
Source:

H:\combined_file.nc
Format:

netcdf4_classic
Variables:

myvar1
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036

5 Add the schema from the second example file to the newly created file,
using ncwriteschema. When you view the contents, notice how the file now
contains the variable defined in the first example file and the variable
defined in the second file.

ncwriteschema('combined_file.nc',finfo2);

6-25

6 Scientific Data

ncdisp('combined_file.nc')
Source:

H:\combined_file.nc
Format:

netcdf4_classic
Variables:

myvar1
Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036
myvar2

Size: 1x1
Dimensions:
Datatype: double
Attributes:

_FillValue = 9.97e+036

Using the NetCDF Low-Level Functions to Export Data
MATLAB provides access to the routines in the NetCDF C library that you
can use to read data from NetCDF files and write data to NetCDF files.
MATLAB provides this access through a set of MATLAB functions that
correspond to the functions in the NetCDF C library. MATLAB groups the
functions into a package, called netcdf. To call one of the functions in the
package, you must specify the package name. For a complete list of all the
functions, see netcdf.

This section does not describe all features of the NetCDF library or explain
basic NetCDF programming concepts. To use the MATLAB NetCDF functions
effectively, you should be familiar with the information about NetCDF
contained in the NetCDF C Interface Guide.

Exporting (Writing) Data to a NetCDF File
To store data in a NetCDF file, you can use the MATLAB NetCDF functions
to create a file, define dimensions in the file, create a variable in the file, and
write data to the variable. Note that you must define dimensions in the file

6-26

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_0_1/

Exporting to Network Common Data Form (NetCDF) Files

before you can create variables. To run the following example, you must have
write permission in your current folder.

1 Create a variable in the MATLAB workspace. This example creates a
50-element vector of numeric values named my_data. The vector is of class
double.

my_data = linspace(0,49,50);

2 Create a NetCDF file (or open an existing file). The example uses the
netcdf.create function to create a new file, named my_file.nc. The
NOCLOBBER parameter is a NetCDF file access constant that indicates that
you do not want to overwrite an existing file with the same name. See
netcdf.create for more information about these file access constants.

ncid = netcdf.create('my_file.nc','NOCLOBBER');

When you create a NetCDF file, the file opens in define mode. You must be
in define mode to define dimensions and variables.

3 Define a dimension in the file, using the netcdf.defDim function. You
must define dimensions in the file before you can define variables and write
data to the file. When you define a dimension, you give it a name and a
length. To create an unlimited dimension, i.e., a dimension that can grow,
specify the constant NC_UNLIMITED in place of the dimension length.

dimid = netcdf.defDim(ncid,'my_dim',50);

4 Define a variable on the dimension, using the netcdf.defVar function.
When you define a variable, you give it a name, data type, and a dimension
ID.

varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid);

You must use one of the NetCDF constants to specify the data type, listed
in the following table.

6-27

6 Scientific Data

MATLAB Class NetCDF Data Type

int8 NC_BYTE1

uint8 NC_BYTE2

char NC_CHAR

int16 NC_SHORT

uint16 No equivalent

int32 NC_INT

uint32 No equivalent

int64 No equivalent

uint64 No equivalent

single NC_FLOAT

double NC_DOUBLE

5 Take the NetCDF file out of define mode. To write data to a file, you must
be in data mode.

netcdf.endDef(ncid);

6 Write the data from the MATLAB workspace into the variable in the
NetCDF file, using the netcdf.putVar function. Note that the data in the
workspace is of class double but the variable in the NetCDF file is of type
NC_BYTE. The MATLAB NetCDF functions automatically do the conversion.

netcdf.putVar(ncid,varid,my_data);

7 Close the file, using the netcdf.close function.

netcdf.close(ncid);

8 Verify that the data was written to the file by opening the file and reading
the data from the variable into a new variable in the MATLAB workspace.

1. NetCDF interprets byte data as either signed or unsigned.

2. NetCDF interprets byte data as either signed or unsigned.

6-28

Exporting to Network Common Data Form (NetCDF) Files

Because the variable is the first variable in the file (and the only one), you
can specify 0 (zero) for the variable ID—identifiers are zero-based indexes.

ncid2 = netcdf.open('my_file.nc','NC_NOWRITE');

data_in_file = netcdf.getVar(ncid2,0)

data_in_file =

0
1
2
3
4
5
6
7
8
9
.
.
.

Because you stored the data in the file as NC_BYTE, MATLAB reads the
data from the variable into the workspace as class int8.

6-29

6 Scientific Data

Importing Flexible Image Transport System (FITS) Files
The FITS file format is the standard data format used in astronomy,
endorsed by both NASA and the International Astronomical Union (IAU).
For more information about the FITS standard, go to the FITS Web site,
http://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of
multidimensional arrays (1-D spectra, 2-D images, or 3-D data cubes) and
two-dimensional tables containing rows and columns of data. A data file in
FITS format can contain multiple components, each marked by an ASCII text
header followed by binary data. The first component in a FITS file is known
as the primary, which can be followed by any number of other components,
called extensions, in FITS terminology. For a complete list of extensions,
see fitsread.

To get information about the contents of a Flexible Image Transport System
(FITS) file, use the fitsinfo function. The fitsinfo function returns a
structure containing the information about the file and detailed information
about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport
System (FITS) file, use the fitsread function. Using this function, you can
import the primary data in the file or you can import the data in any of the
extensions in the file, such as the Image extension, as shown in this example.

1 Determine which extensions the FITS file contains, using the fitsinfo
function.

info = fitsinfo('tst0012.fits')

info =

Filename: 'matlabroot\tst0012.fits'

FileModDate: '12-Mar-2001 19:37:46'

FileSize: 109440

Contents: {'Primary' 'Binary Table' 'Unknown' 'Image' 'ASCII Table'}

PrimaryData: [1x1 struct]

BinaryTable: [1x1 struct]

Unknown: [1x1 struct]

6-30

http://fits.gsfc.nasa.gov/

Importing Flexible Image Transport System (FITS) Files

Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including
the Binary Table, ASCII Table, and Image extensions.

2 Read data from the file.

To read the Primary data in the file, specify the filename as the only
argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the
extension as an optional parameter. This example reads the Binary Table
extension from the FITS file:

bindata = fitsread('tst0012.fits','binarytable');

6-31

6 Scientific Data

Importing Hierarchical Data Format (HDF5) Files

In this section...

“Overview” on page 6-32

“Using the High-Level HDF5 Functions to Import Data” on page 6-32

“Using the Low-Level HDF5 Functions to Import Data” on page 6-39

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:

• High-level functions that make it easy to import data, when working with
numeric datasets

• Low-level functions that enable more complete control over the importing
process, by providing access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a completely
separate, incompatible format, see “Importing Hierarchical Data Format
(HDF4) Files” on page 6-52.

Using the High-Level HDF5 Functions to Import Data
MATLAB includes several functions that you can use to examine the contents
of an HDF5 file and import data from the file into the MATLAB workspace.

6-32

http://www.hdfgroup.org

Importing Hierarchical Data Format (HDF5) Files

Note You can only use the high-level functions to read numeric datasets or
attributes. To read non-numeric datasets or attributes, you must use the
low-level interface.

• h5disp — View the contents of an HDF5 file

• h5info — Create a structure that contains all the metadata defining an
HDF5 file

• h5read— Read data from a variable in an HDF5 file

• h5readatt— Read data from an attribute associated with a variable in an
HDF5 file or with the file itself (a global attribute).

For details about how to use these functions, see their reference pages, which
include examples. The following sections illustrate some common usage
scenarios.

Determining the Contents of an HDF5 File
HDF5 files can contain data and metadata, called attributes. HDF5 files
organize the data and metadata in a hierarchical structure similar to the
hierarchical structure of a UNIX file system.

In an HDF5 file, the directories in the hierarchy are called groups. A group
can contain other groups, data sets, attributes, links, and data types. A data
set is a collection of data, such as a multidimensional numeric array or string.
An attribute is any data that is associated with another entity, such as a data
set. A link is similar to a UNIX file system symbolic link. Links are a way to
reference objects without having to make a copy of the object.

Data types are a description of the data in the data set or attribute. Data
types tell how to interpret the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.

h5disp('example.h5')

HDF5 example.h5
Group '/'

6-33

6 Scientific Data

Attributes:
'attr1': 97 98 99 100 101 102 103 104 105 0
'attr2': 2x2 H5T_INTEGER

Group '/g1'
Group '/g1/g1.1'

Dataset 'dset1.1.1'
Size: 10x10
MaxSize: 10x10
Datatype: H5T_STD_I32BE (int32)
ChunkSize: []
Filters: none
Attributes:

'attr1': 49 115 116 32 97 116 116 114 105 ...
'attr2': 50 110 100 32 97 116 116 114 105 ...

Dataset 'dset1.1.2'
Size: 20
MaxSize: 20
Datatype: H5T_STD_I32BE (int32)
ChunkSize: []
Filters: none

Group '/g1/g1.2'
Group '/g1/g1.2/g1.2.1'

Link 'slink'
Type: soft link

Group '/g2'
Dataset 'dset2.1'

Size: 10
MaxSize: 10
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none

Dataset 'dset2.2'
Size: 5x3
MaxSize: 5x3
Datatype: H5T_IEEE_F32BE (single)
ChunkSize: []
Filters: none

.

.

.

6-34

Importing Hierarchical Data Format (HDF5) Files

To explore the hierarchical organization of an HDF5 file, use the h5info
function. h5info returns a structure that contains various information about
the HDF5 file, including the name of the file.

info = h5info('example.h5')
info =

Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5'
Name: '/'

Groups: [4x1 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [2x1 struct]

By looking at the Groups and Attributes fields, you can see that the file
contains four groups and two attributes. The Datasets, Datatypes, and
Links fields are all empty, indicating that the root group does not contain any
data sets, data types, or links. To explore the contents of the sample HDF5
file further, examine one of the structures in Groups. The following example
shows the contents of the second structure in this field.

level2 = info.Groups(2)

level2 =

Name: '/g2'
Groups: []

Datasets: [2x1 struct]
Datatypes: []

Links: []
Attributes: []

6-35

6 Scientific Data

In the sample file, the group named /g2 contains two data sets. The following
figure illustrates this part of the sample HDF5 file organization.

�

����� ����� ��� ��	 ��
���

������ ������

To get information about a data set, such as its name, dimensions, and data
type, look at either of the structures returned in the Datasets field.

dataset1 = level2.Datasets(1)

dataset1 =
Filename: 'matlabroot\example.h5'

Name: '/g2/dset2.1'
Rank: 1

Datatype: [1x1 struct]
Dims: 10

MaxDims: 10
Layout: 'contiguous'

Attributes: []
Links: []

Chunksize: []
Fillvalue: []

Importing Data from an HDF5 File
To read data or metadata from an HDF5 file, use the h5read function. As
arguments, specify the name of the HDF5 file and the name of the data set.
(To read the value of an attribute, you must use h5readatt.)

6-36

Importing Hierarchical Data Format (HDF5) Files

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5
sample file example.h5.

data = h5read('example.h5','/g2/dset2.1')

data =

1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000

Mapping HDF5 Datatypes to MATLAB Datatypes
When the h5read function reads data from an HDF5 file into the MATLAB
workspace, it maps HDF5 data types toMATLAB data types, as shown in
the table below.

HDF5 Data Type h5read Returns

Bit-field Array of packed 8-bit integers

Float MATLAB single and double types, provided
that they occupy 64 bits or fewer

Integer types, signed and
unsigned

Equivalent MATLAB integer types, signed
and unsigned

Opaque Array of uint8 values

Reference Returns the actual data pointed to by the
reference, not the value of the reference.

Strings, fixed-length and
variable length

Cell array of strings

6-37

6 Scientific Data

HDF5 Data Type h5read Returns

Enums Cell array of strings, where each enumerated
value is replaced by the corresponding member
name

Compound 1-by-1 struct array; the dimensions of the
dataset are expressed in the fields of the
structure.

Arrays Array of values using the same datatype as
the HDF5 array. For example, if the array is
of signed 32-bit integers, the MATLAB array
will be of type int32.

The example HDF5 file included with MATLAB includes examples of all
these datatypes.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g3/string')
HDF5 example.h5
Dataset 'string'

Size: 2
MaxSize: 2
Datatype: H5T_STRING

String Length: 3
Padding: H5T_STR_NULLTERM
Character Set: H5T_CSET_ASCII
Character Type: H5T_C_S1

ChunkSize: []
Filters: none
FillValue: ''

Now read the data from the file, MATLAB returns it as a cell array of strings.

s = h5read('example.h5','/g3/string')

s =

'ab '

6-38

Importing Hierarchical Data Format (HDF5) Files

'de '

>> whos s
Name Size Bytes Class Attributes

s 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The
dimensions of the data set are expressed in the fields of the struct. For
example, the data set /g3/compound2D is a compound datatype.

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'

Size: 2x3
MaxSize: 2x3
Datatype: H5T_COMPOUND

Member 'a': H5T_STD_I8LE (int8)
Member 'b': H5T_IEEE_F64LE (double)

ChunkSize: []
Filters: none
FillValue: H5T_COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.

data = h5read('example.h5','/g3/compound2D')

data =

a: [2x3 int8]
b: [2x3 double]

Using the Low-Level HDF5 Functions to Import Data
MATLAB provides direct access to dozens of functions in the HDF5 library
with low-level functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities. For more information, see “Using the MATLAB
Low-Level HDF5 Functions to Export Data” on page 6-41.

6-39

6 Scientific Data

Exporting to Hierarchical Data Format (HDF5) Files

In this section...

“Overview” on page 6-40

“Using the MATLAB High-Level HDF5 Functions to Export Data” on page
6-40

“Using the MATLAB Low-Level HDF5 Functions to Export Data” on page
6-41

Overview
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

• High-level functions that simplify the process of exporting data, when
working with numeric datasets

• Low-level functions that provide a MATLAB interface to routines in the
HDF5 C library

Note For information about exporting to HDF4 files, which have a completely
separate and incompatible format, see “Exporting to Hierarchical Data
Format (HDF4) Files” on page 6-82.

Using the MATLAB High-Level HDF5 Functions to
Export Data
The easiest way to write data or metadata from the MATLAB workspace to
an HDF5 file is to use these MATLAB high-level functions.

6-40

http://www.hdfgroup.org

Exporting to Hierarchical Data Format (HDF5) Files

Note You can use the high-level functions only with numeric data. To write
nonnumeric data, you must use the low-level interface.

• h5create — Create an HDF5 dataset

• h5write — Write data to an HDF5 dataset

• h5writeatt — Write data to an HDF5 attribute

For details about how to use these functions, see their reference pages, which
include examples. The following sections illustrate some common usage
scenarios.

Writing a Numeric Array to an HDF5 Dataset
This example creates an array and then writes the array to an HDF5 file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5
array of uint8 values.

testdata = uint8(magic(5))

2 Create the HDF5 file and the dataset, using h5create.

h5create('my_example_file.h5', '/dataset1', size(testdata))

3 Write the data to the HDF5 file.

h5write('my_example_file.h5', '/dataset1', testdata)

Using the MATLAB Low-Level HDF5 Functions to
Export Data
MATLAB provides direct access to dozens of functions in the HDF5 library
with low-level functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities. For more information, see “Using the MATLAB
Low-Level HDF5 Functions to Export Data” on page 6-41.

6-41

6 Scientific Data

The HDF5 library organizes the library functions into collections, called
interfaces. For example, all the routines related to working with files, such
as opening and closing, are in the H5F interface, where F stands for file.
MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond
to the HDF5 file interface (H5F) are in the @H5F class folder.

The following sections provide more detail about how to use the MATLAB
HDF5 low-level functions.

• “Mapping HDF5 Function Syntax to MATLAB Function Syntax” on page
6-42

• “Mapping Between HDF5 Data Types and MATLAB Data Types” on page
6-45

• “Reporting Data Set Dimensions” on page 6-46

• “Writing Data to an HDF5 Data Set Using the MATLAB Low-Level
Functions” on page 6-47

• “Preserving the Correct Layout of Your Data” on page 6-50

Note This section does not describe all features of the HDF5 library or
explain basic HDF5 programming concepts. To use the MATLAB HDF5
low-level functions effectively, refer to the official HDF5 documentation
available at http://www.hdfgroup.org.

Mapping HDF5 Function Syntax to MATLAB Function Syntax
In most cases, the syntax of the MATLAB low-level HDF5 functions matches
the syntax of the corresponding HDF5 library functions. For example, the
following is the function signature of the H5Fopen function in the HDF5
library. In the HDF5 function signatures, hid_t and herr_t are HDF5 types
that return numeric values that represent object identifiers or error status
values.

hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

6-42

http://www.hdfgroup.org

Exporting to Hierarchical Data Format (HDF5) Files

In MATLAB, each function in an HDF5 interface is a method of a MATLAB
class. To view the function signature for a function, specify the class folder
name and then the function name, as in the following.

help @H5F/open

The following shows the signature of the corresponding MATLAB function.
First note that, because it’s a method of a class, you must use the dot notation
to call the MATLAB function: H5F.open. This MATLAB function accepts the
same three arguments as the HDF5 function: a text string for the name,
an HDF5-defined constant for the flags argument, and an HDF5 property
list ID. You use property lists to specify characteristics of many different
HDF5 objects. In this case, it’s a file access property list. Refer to the HDF5
documentation to see which constants can be used with a particular function
and note that, in MATLAB, constants are passed as text strings.

file_id = H5F.open(name, flags, plist_id)

There are, however, some functions where the MATLAB function signature
is different than the corresponding HDF5 library function. The following
describes some general differences that you should keep in mind when using
the MATLAB low-level HDF5 functions.

• HDF5 output parameters become MATLAB return values — Some
HDF5 library functions use function parameters to return data. Because
MATLAB functions can return multiple values, these output parameters
become return values. To illustrate, the HDF5 H5Dread function returns
data in the buf parameter.

herr_t H5Dread(hid_t dataset_id,

hid_t mem_type_id,

hid_t mem_space_id,

hid_t file_space_id,

hid_t xfer_plist_id,

void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf
into a return value. Also, in the MATLAB function, the nonzero or negative
value herr_t return values become MATLAB errors. Use MATLAB
try-catch statements to handle errors.

6-43

6 Scientific Data

buf = H5D.read(dataset_id,

mem_type_id,

mem_space_id,

file_space_id,

plist_id)

• String length parameters are unnecessary — The length parameter,
used by some HDF5 library functions to specify the length of a string
parameter, is not necessary in the corresponding MATLAB function. For
example, the H5Aget_name function in the HDF5 library includes a buffer
as an output parameter and the size of the buffer as an input parameter.

ssize_t H5Aget_name(hid_t attr_id,

size_t buf_size,

char *buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf
into a return value and drops the buf_size parameter.

buf = H5A.get_name(attr_id)

• Use an empty array to specify NULL — Wherever HDF5 library
functions accept the value NULL, the corresponding MATLAB function uses
empty arrays ([]). For example, the H5Dfill function in the HDF5 library
accepts the value NULL in place of a specified fill value.

herr_t H5Dfill(const void *fill,

hid_t fill_type_id, void *buf,

hid_t buf_type_id,

hid_t space_id) /* C syntax */

When using the corresponding MATLAB function, you can specify an
empty array ([]) instead of NULL.

• Use cell arrays to specify multiple constants— Some functions in the
HDF5 library require you to specify an array of constants. For example,
in the H5Screate_simple function, to specify that a dimension in the
data space can be unlimited, you use the constant H5S_UNLIMITED for the
dimension in maxdims. In MATLAB, because you pass constants as text
strings, you must use a cell array to achieve the same result. The following
code fragment provides an example of using a cell array to specify this
constant for each dimension of this data space.

6-44

Exporting to Hierarchical Data Format (HDF5) Files

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

Mapping Between HDF5 Data Types and MATLAB Data Types
When the HDF5 low-level functions read data from an HDF5 file or write
data to an HDF5 file, the functions map HDF5 data types to MATLAB data
types automatically.

For atomic data types, such as commonly used binary formats for numbers
(integers and floating point) and characters (ASCII), the mapping is typically
straightforward because MATLAB supports similar types. See the table
Mapping Between HDF5 Atomic Data Types and MATLAB® Data Types on
page 6-45 for a list of these mappings.

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types

HDF5 Atomic
Data Type

MATLAB Data Type

Bit-field Array of packed 8-bit integers

Float MATLAB single and double types, provided that they
occupy 64 bits or fewer

Integer types,
signed and
unsigned

Equivalent MATLAB integer types, signed and
unsigned

Opaque Array of uint8 values

Reference Array of uint8 values

String MATLAB character arrays

For composite data types, such as aggregations of one or more atomic data
types into structures, multidimensional arrays, and variable-length data
types (one-dimensional arrays), the mapping is sometimes ambiguous with
reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing
a single uint8 value in each element is distinct from a 1-by-1 data set
containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value. In the second case, the data set

6-45

6 Scientific Data

contains a single observation with 25 values. In MATLAB both of these data
sets are represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data
types directly to make sure you have the mapping you intend. See the table
Mapping Between HDF5 Composite Data Types and MATLAB® Data Types
on page 6-46 for a list of the default mappings. You can specify the data type
when you write data to the file using the H5Dwrite function. See the HDF5
data type interface documentation for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data
Types

HDF5 Composite
Data Type

MATLAB Data Type

Array Extends the dimensionality of the data type which
it contains. For example, an array of an array of
integers in HDF5 would map onto a two dimensional
array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing
HDF5 data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name

Variable Length MATLAB 1-D cell arrays

Reporting Data Set Dimensions
The MATLAB low-level HDF5 functions report data set dimensions and the
shape of data sets differently than the MATLAB high-level functions. For
ease of use, the MATLAB high-level functions report data set dimensions
consistent with MATLAB column-major indexing. To be consistent with
the HDF5 library, and to support the possibility of nested data sets and
complicated data types, the MATLAB low-level functions report array
dimensions using the C row-major orientation.

6-46

Exporting to Hierarchical Data Format (HDF5) Files

Writing Data to an HDF5 Data Set Using the MATLAB Low-Level
Functions
This example shows how to use the MATLAB HDF5 low-level functions to
write a data set to an HDF5 file and then read the data set from the file.

1 Create the MATLAB variable that you want to write to the HDF5 file. The
examples creates a two-dimensional array of uint8 data.

testdata = [1 3 5; 2 4 6];

2 Create the HDF5 file or open an existing file. The example creates a new
HDF5 file, named my_file.h5, in the system temp folder.

filename = fullfile(tempdir,'my_file.h5');

fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

In HDF5, use the H5Fcreate function to create a file. The example uses
the MATLAB equivalent, H5F.create. As arguments, specify the name
you want to assign to the file, the type of access you want to the file
('H5F_ACC_TRUNC' in the example), and optional additional characteristics
specified by a file creation property list and a file access property list. This
example uses default values for these property lists ('H5P_DEFAULT').
In the example, note how the C constants are passed to the MATLAB
functions as strings. The function returns an ID to the HDF5 file.

3 Create the data set in the file to hold the MATLAB variable. In the HDF5
programming model, you must define the data type and dimensionality
(data space) of the data set as separate entities.

a Specify the data type used by the data set. In HDF5, use the H5Tcopy
function to create integer or floating-point data types. The example uses
the corresponding MATLAB function, H5T.copy, to create a double
data type because the MATLAB data is double. The function returns
a data type ID.

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

b Specify the dimensions of the data set. In HDF5, use the
H5Screate_simple routine to create a data space. The example uses the

6-47

6 Scientific Data

corresponding MATLAB function, H5S.create_simple, to specify the
dimensions. The function returns a data space ID.

Because HDF5 stores data in row-major order and the MATLAB array
is organized in column-major order, you should reverse the ordering of
the dimension extents before using H5Screate_simple to preserve the
layout of the data. You can use fliplr for this purpose. For a list of
other HDF5 functions that require dimension flipping, see “Preserving
the Correct Layout of Your Data” on page 6-50.

dims = size(testdata);
dataspaceID = H5S.create_simple(2, fliplr(dims), []);

Other software programs that use row-major ordering (such as H5DUMP
from the HDF Group) may report the size of the dataset to be 3-by-2
instead of 2-by-3.

c Create the data set. In HDF5, you use the H5Dcreate routine to create
a data set. The example uses the corresponding MATLAB function,
H5D.create, specifying the file ID, the name you want to assign to
the data set, data type ID, the data space ID, and a data set creation
property list ID as arguments. The example uses the defaults for the
property lists. The function returns a data set ID.

dsetname = 'my_dataset';

datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

6-48

Exporting to Hierarchical Data Format (HDF5) Files

Note To write a large data set, you must use the chunking capability
of the HDF5 library. To do this, create a property list and use the
H5P.set_chunk function to set the chunk size in the property list. In the
following example, the dimensions of the data set are dims = [2^16
2^16] and the chunk size is 1024-by-1024. You then pass the property
list as the last argument to the data set creation function, H5D.create,
instead of using the H5P_DEFAULT value.

plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size

H5P.set_chunk(plistID, chunk_size); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

4 Write the data to the data set. In HDF5, use the H5Dwrite routine to write
data to a data set. The example uses the corresponding MATLAB function,
H5D.write, specifying as arguments the data set ID, the memory data type
ID, the memory space ID, the data space ID, the transfer property list ID
and the name of the MATLAB variable to be written to the data set.

You can use the memory data type to specify the data type used to represent
the data in the file. The example uses the constant 'H5ML_DEFAULT' which
lets the MATLAB function do an automatic mapping to HDF5 data types.
The memory data space ID and the data set’s data space ID specify to write
subsets of the data set to the file. The example uses the constant 'H5S_ALL'
to write all the data to the file and uses the default property list.

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL', ...

'H5P_DEFAULT', testdata);

If you had not reversed the ordering of the dimension extents in step 3b
above, you would have been required to permute the MATLAB array before
using H5D.write, which could result in an enormous performance penalty.

5 Close the data set, data space, data type, and file objects. If used inside a
MATLAB function, these identifiers are closed automatically when they
go out of scope.

6-49

6 Scientific Data

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

6 To read the data set you wrote to the file, you must open the file. In HDF5,
you use the H5Fopen routine to open an HDF5 file, specifying the name of
the file, the access mode, and a property list as arguments. The example
uses the corresponding MATLAB function, H5F.open, opening the file for
read-only access.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

7 After opening the file, you must open the data set. In HDF5, you use the
H5Dopen function to open a data set. The example uses the corresponding
MATLAB function, H5D.open, specifying as arguments the file ID and the
name of the data set, defined earlier in the example.

datasetID = H5D.open(fileID, dsetname);

8 After opening the data set, you can read the data into the MATLAB
workspace. In HDF5, you use the H5Dread function to read an HDF5
file. The example uses the corresponding MATLAB function, H5D.read,
specifying as arguments the data set ID, the memory data type ID, the
memory space ID, the data space ID, and the transfer property list ID.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
'H5S_ALL','H5S_ALL','H5P_DEFAULT');

You can compare the original MATLAB variable, testdata, with the
variable just created, data, to see if they are the same.

Preserving the Correct Layout of Your Data
When you use any of the following functions that deal with dataspaces, you
should flip dimension extents to preserve the correct layout of the data,
as illustrated in step 3b in “Writing Data to an HDF5 Data Set Using the
MATLAB Low-Level Functions” on page 6-47.

• H5D.set_extent

6-50

Exporting to Hierarchical Data Format (HDF5) Files

• H5P.get_chunk

• H5P.set_chunk

• H5S.create_simple

• H5S.get_simple_extent_dims

• H5S.select_hyperslab

• H5T.array_create

• H5T.get_array_dims

6-51

6 Scientific Data

Importing Hierarchical Data Format (HDF4) Files

In this section...

“Overview” on page 6-52

“Using the MATLAB HDF4 High-Level Functions” on page 6-52

“Using the HDF4 Low-Level Functions” on page 6-56

“Using the HDF Import Tool” on page 6-63

“Using the HDF Import Tool Subsetting Options” on page 6-68

Overview
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in
the following sections.

Note For information about importing HDF5 data, which is a separate,
incompatible format, see “Importing Hierarchical Data Format (HDF5) Files”
on page 6-32.

Using the MATLAB HDF4 High-Level Functions
To import data from an HDF or HDF-EOS file, you can use the MATLAB
HDF4 high-level function hdfread. The hdfread function provides a
programmatic way to import data from an HDF4 or HDF-EOS file that still

6-52

http://www.hdfgroup.org
http://www.hdfeos.org

Importing Hierarchical Data Format (HDF4) Files

hides many of the details that you need to know if you use the low-level HDF
functions, described in “Using the HDF4 Low-Level Functions” on page 6-56.

This section describes these high-level MATLAB HDF functions, including

• “Using hdfinfo to Get Information About an HDF4 File” on page 6-53

• “Using hdfread to Import Data from an HDF4 File” on page 6-53

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level
functions.

Using hdfinfo to Get Information About an HDF4 File
To get information about the contents of an HDF4 file, use the hdfinfo
function. The hdfinfo function returns a structure that contains information
about the file and the data in the file.

This example returns information about a sample HDF4 file included with
MATLAB:

info = hdfinfo('example.hdf')

info =

Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]

Vgroup: [1x1 struct]
SDS: [1x1 struct]

Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File
To use the hdfread function, you must specify the data set that you want to
read. You can specify the filename and the data set name as arguments, or
you can specify a structure returned by the hdfinfo function that contains
this information. The following example shows both methods. For information
about how to import a subset of the data in a data set, see “Reading a Subset
of the Data in a Data Set” on page 6-55.

6-53

6 Scientific Data

1 Determine the names of data sets in the HDF4 file, using the hdfinfo
function.

info = hdfinfo('example.hdf')

info =

Filename: 'matlabroot\example.hdf'
Attributes: [1x2 struct]

Vgroup: [1x1 struct]
SDS: [1x1 struct]

Vdata: [1x1 struct]

To determine the names and other information about the data sets in the file,
look at the contents of the SDS field. The Name field in the SDS structure
gives the name of the data set.

dsets = info.SDS

dsets =

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify the
name of the data set as a parameter to the function. Note that the data set
name is case sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =

3 4 5 6 7

6-54

Importing Hierarchical Data Format (HDF4) Files

4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13

10 11 12 13 14
11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by
hdfinfo that contains this information. For example, to read a scientific
data set, use the SDS field.

dset = hdfread(info.SDS);

Reading a Subset of the Data in a Data Set. To read a subset of a data
set, you can use the optional 'index' parameter. The value of the index
parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and
the amount of data to read (e.g., the length along each dimension). In HDF4
terminology, these parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).

• Reads every element in the array ([]).

• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
'Index',{[3 3],[],[10 2]})

subset =

6-55

6 Scientific Data

7 8
8 9
9 10

10 11
11 12
12 13
13 14
14 15
15 16
16 17

Using the HDF4 Low-Level Functions
This section describes how to use MATLAB functions to access the HDF4
Application Programming Interfaces (APIs). These APIs are libraries of C
routines. To import or export data, you must use the functions in the HDF4
API associated with the particular HDF4 data type you are working with.
Each API has a particular programming model, that is, a prescribed way
to use the routines to write data sets to the file. To illustrate this concept,
this section describes the programming model of one particular HDF4 API:
the HDF4 Scientific Data (SD) API. For a complete list of the HDF4 APIs
supported by MATLAB and the functions you use to access each one, see
the hdf reference page.

Note This section does not attempt to describe all HDF4 features and
routines. To use the MATLAB HDF4 functions effectively, you must refer to
the official NCSA documentation at the HDF Web site (www.hdfgroup.org).

This section includes the following:

• “Mapping HDF4 to MATLAB Syntax” on page 6-57

• “Step 1: Opening the HDF4 File” on page 6-58

• “Step 2: Retrieving Information About the HDF4 File” on page 6-59

• “Step 3: Retrieving Attributes from an HDF4 File (Optional)” on page 6-59

• “Step 4: Selecting the Data Sets to Import” on page 6-60

6-56

http://www.hdfgroup.org

Importing Hierarchical Data Format (HDF4) Files

• “Step 5: Getting Information About a Data Set” on page 6-60

• “Step 6: Reading Data from the HDF4 File” on page 6-61

• “Step 7: Closing the HDF4 Data Set” on page 6-63

• “Step 8: Closing the HDF4 File” on page 6-63

Mapping HDF4 to MATLAB Syntax
Each HDF4 API includes many individual routines that you use to read
data from files, write data to files, and perform other related functions. For
example, the HDF4 Scientific Data (SD) API includes separate C routines to
open (SDopen), close (SDend), and read data (SDreaddata).

Instead of supporting each routine in the HDF4 APIs, MATLAB provides a
single function that serves as a gateway to all the routines in a particular
HDF4 API. For example, the HDF Scientific Data (SD) API includes the C
routine SDend to close an HDF4 file:

status = SDend(sd_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the SD API, hdfsd. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfsd('end',sd_id); % MATLAB code

Some HDF4 API routines use output arguments to return data. Because
MATLAB does not support output arguments, you must specify these
arguments as return values.

For example, the SDfileinfo routine returns data about an HDF4 file in two
output arguments, ndatasets and nglobal_atts. Here is the C code:

status = SDfileinfo(sd_id, ndatasets, nglobal_atts);

To call this routine from MATLAB, change the output arguments into return
values:

[ndatasets, nglobal_atts, status] = hdfsd('fileinfo',sd_id);

6-57

6 Scientific Data

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

Step 1: Opening the HDF4 File

Note These steps, when referring to specific routines in the HDF4 SD API,
use the C library name rather than the MATLAB function name. The
MATLAB syntax is used in all examples.

To import an HDF4 SD data set, you must first open the file using the SD
API routine SDstart. (In HDF4 terminology, the numeric arrays stored in
HDF4 files are called data sets.) In MATLAB, you use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, start in this case.

• Name of the file you want to open.

• Mode in which you want to open it. The following table lists the file access
modes supported by the SDstart routine. In MATLAB, you specify these
modes as text strings. You can specify the full HDF4 mode name or one of
the abbreviated forms listed in the table.

HDF4 File Creation
Mode HDF4 Mode Name MATLAB String

Create a new file 'DFACC_CREATE' 'create'

Read access 'DFACC_RDONLY' 'read' or 'rdonly'

Read and write access 'DFACC_RDWR' 'rdwr' or 'write'

For example, this code opens the file mydata.hdf for read access:

sd_id = hdfsd('start','mydata.hdf','read');

If SDstart can find and open the file specified, it returns an HDF4 SD file
identifier, named sd_id in the example. Otherwise, it returns -1.

6-58

Importing Hierarchical Data Format (HDF4) Files

Step 2: Retrieving Information About the HDF4 File
To get information about an HDF4 file, you must use the SD API routine
SDfileinfo. This function returns the number of data sets in the file and
the number of global attributes in the file, if any. (For more information
about global attributes, see “Exporting to Hierarchical Data Format (HDF4)
Files” on page 6-82.) In MATLAB, you use the hdfsd function, specifying the
following arguments:

• Name of the SD API routine, fileinfo in this case

• SD file identifier, sd_id, returned by SDstart

In this example, the HDF4 file contains three data sets and one global
attribute.

[ndatasets, nglobal_atts, stat] = hdfsd('fileinfo',sd_id)

ndatasets =
3

nglobal_atts =
1

status =
0

Step 3: Retrieving Attributes from an HDF4 File (Optional)
HDF4 files can optionally include information, called attributes, that describes
the data the file contains. Attributes associated with an entire HDF4 file are
called global attributes. Attributes associated with a data set are called local
attributes. (You can also associate attributes with files or dimensions. For
more information, see “Step 4: Writing Metadata to an HDF4 File” on page
6-88.)

To retrieve attributes from an HDF4 file, use the HDF4 API routine
SDreadattr. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, readattr in this case.

6-59

6 Scientific Data

• File identifier (sd_id) returned by SDstart, for global attributes, or the
data set identifier for local attributes. (See “Step 4: Selecting the Data Sets
to Import” on page 6-60 to learn how to get a data set identifier.)

• Index identifying the attribute you want to view. HDF4 uses zero-based
indexing. If you know the name of an attribute but not its index, use the
SDfindattr routine to determine the index value associated with the
attribute.

For example, this code returns the contents of the first global attribute, which
is the character string my global attribute:

attr_idx = 0;
[attr, status] = hdfsd('readattr', sd_id, attr_idx);

attr =
my global attribute

Step 4: Selecting the Data Sets to Import
To select a data set, use the SD API routine SDselect. In MATLAB, you use
the hdfsd function, specifying as arguments:

• Name of the SD API routine, select in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

If SDselect finds the specified data set in the file, it returns an HDF4 SD
data set identifier, called sds_id in the example. If it cannot find the data
set, it returns -1.

Note Do not confuse HDF4 SD file identifiers, named sd_id in the examples,
with HDF4 SD data set identifiers, named sds_id in the examples.

sds_id = hdfsd('select',sd_id,1)

Step 5: Getting Information About a Data Set
To read a data set, you must get information about the data set, such as its
name, size, and data type. In the HDF4 SD API, you use the SDgetinfo

6-60

Importing Hierarchical Data Format (HDF4) Files

routine to gather this information. In MATLAB, use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, getinfo in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

This code retrieves information about the data set identified by sds_id:

[dsname, dsndims, dsdims, dstype, dsatts, stat] =
hdfsd('getinfo',sds_id)

dsname =
A

dsndims =
2

dsdims =
5 3

dstype =
double

dsatts =
0

stat =
0

Step 6: Reading Data from the HDF4 File
To read data from an HDF4 file, you must use the SDreaddata routine. In
MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API function, readdata in this case.

• HDF4 SD data set identifier (sds_id) returned by SDselect.

• Location in the data set where you want to start reading data, specified as a
vector of index values, called the start vector. To read from the beginning of
a data set, specify zero for each element of the start vector. Use SDgetinfo
to determine the dimensions of the data set.

6-61

6 Scientific Data

• Number of elements along each dimension to skip between each read
operation, specified as a vector of scalar values, called the stride vector. To
read every element of a data set, specify 1 as the value for each element of
the vector or specify an empty array ([]).

• Total number of elements to read along each dimension, specified as a
vector of scalar values, called the edges vector. To read every element of a
data set, set each element of the edges vector to the size of each dimension
of the data set. Use SDgetinfo to determine these sizes.

Note SDgetinfo returns dimension values in row-major order, the ordering
used by HDF4. Because MATLAB stores data in column-major order, you
must specify the dimensions in column-major order, that is, [columns,rows].
In addition, you must use zero-based indexing in these arguments.

For example, to read the entire contents of a data set, use this code:

[ds_name, ds_ndims, ds_dims, ds_type, ds_atts, stat] =

hdfsd('getinfo',sds_id);

ds_start = zeros(1,ds_ndims); % Creates the vector [0 0]

ds_stride = [];

ds_edges = ds_dims;

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

disp(ds_data)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

To read less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start reading data and how much data you want
to read. For example, this code reads the entire second row of the sample
data set:

ds_start = [0 1]; % Start reading at the first column, second row

ds_stride = []; % Read each element

6-62

Importing Hierarchical Data Format (HDF4) Files

ds_edges = [5 1]; % Read a 1-by-5 vector of data

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

Step 7: Closing the HDF4 Data Set
After writing data to a data set in an HDF4 file, you must close access to the
data set. In the HDF4 SD API, you use the SDendaccess routine to close a
data set. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, endaccess in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

For example, this code closes the data set:

stat = hdfsd('endaccess',sds_id);

You must close access to all the data sets in an HDF4 file before closing it.

Step 8: Closing the HDF4 File
After writing data to a data set and closing the data set, you must also close
the HDF4 file. In the HDF4 SD API, you use the SDend routine. In MATLAB,
use the hdfsd function, specifying as arguments:

• Name of the SD API routine, end in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

For example, this code closes the HDF4 file:

stat = hdfsd('end',sd_id);

Using the HDF Import Tool

Note The HDF Import Tool will be removed in a future release.

6-63

6 Scientific Data

The HDF Import Tool is a graphical user interface that you can use to
navigate through HDF4 or HDF-EOS files and import data from them.
Importing data using the HDF Import Tool involves these steps:

• “Step 1: Opening an HDF4 File in the HDF Import Tool” on page 6-64

• “Step 2: Selecting a Data Set in an HDF File” on page 6-66

• “Step 3: Specifying a Subset of the Data (Optional)” on page 6-67

• “Step 4: Importing Data and Metadata” on page 6-67

• “Step 5: Closing HDF Files and the HDF Import Tool” on page 6-68

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool
Open an HDF4 or HDF-EOS file in MATLAB using one of the following
methods:

• On theHome tab, in the Variable section, click Import Data. If you select
an HDF4 or HDF-EOS file, the MATLAB Import Wizard automatically
starts the HDF Import Tool.

• Start the HDF Import Tool by entering the hdftool command at the
MATLAB command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open
option on the HDFTool File menu and select the file you want to open. You
can open multiple files in the HDF Import Tool.

• Open an HDF or HDF-EOS file by specifying the file name with the
hdftool command on the MATLAB command line:

hdftool('example.hdf')

6-64

Importing Hierarchical Data Format (HDF4) Files

Viewing a File in the HDF Import Tool. When you open an HDF4 or
HDF-EOS file in the HDF Import Tool, the tool displays the contents of the
file in the Contents pane. You can use this pane to navigate within the file
to see what data sets it contains. You can view the contents of HDF-EOS
files as HDF data sets or as HDF-EOS files. The icon in the contents pane
indicates the view, as illustrated in the following figure. Note that these
are just two views of the same data.

����������
������
�������

�������

�������� �� !������� ���

"� ����������
�#$������
 ��

6-65

6 Scientific Data

Step 2: Selecting a Data Set in an HDF File
To import a data set, you must first select the data set in the contents pane of
the HDF Import Tool. Use the Contents pane to view the contents of the file
and navigate to the data set you want to import.

For example, the following figure shows the data set Example SDS in the
HDF file selected. Once you select a data set, the Metadata panel displays
information about the data set and the importing and subsetting pane
displays subsetting options available for this type of HDF object.

��%��
�������

�������
�������

�#$������
� �����������&��
�����$'%�

6-66

Importing Hierarchical Data Format (HDF4) Files

Step 3: Specifying a Subset of the Data (Optional)
When you select a data set in the contents pane, the importing and subsetting
pane displays the subsetting options available for that type of HDF object.
The subsetting options displayed vary depending on the type of HDF object.
For more information, see “Using the HDF Import Tool Subsetting Options”
on page 6-68.

Step 4: Importing Data and Metadata
To import the data set you have selected, click the Import button, bottom
right corner of the Importing and Subsetting pane. Using the Importing and
Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF
Import Tool uses the name of the HDF4 data set as the name of the
MATLAB workspace variable. In the following figure, the variable name
is Example_SDS. To specify another name, enter text in the Workspace
Variable text box.

• Specify whether to import metadata associated with the data set — To
import any metadata that might be associated with the data set, select the
Import Metadata check box. To store the metadata, the HDF Import
Tool creates a second variable in the workspace with the same name with
“_info” appended to it. For example, if you select this check box, the
name of the metadata variable for the data set in the figure would be
Example_SDS_info.

• Save the data set import command syntax — The Dataset import
command text window displays the MATLAB command used to import
the data set. This text is not editable, but you can copy and paste it into the
MATLAB Command Window or a text editor for reuse.

The following figure shows how to specify these options in the HDF Import
Tool.

6-67

6 Scientific Data

"� �����������
���&��������

� %��(�������
)����$���������
�������

!*+,*-�%������
#�������� ��������

���%.�&������� ���
�������

Step 5: Closing HDF Files and the HDF Import Tool
To close a file, select the file in the contents pane and click Close File on the
HDF Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on
the HDF Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or
click the Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,

h = hdftool('example.hdf')

you can use the close(h) command to close the tool from the MATLAB
command line.

Using the HDF Import Tool Subsetting Options

Note The HDF Import Tool will be removed in a future release.

When you select a data set, the importing and subsetting pane displays the
subsetting options available for that type of data set. The following sections
provide information about these subsetting options for all supported data

6-68

Importing Hierarchical Data Format (HDF4) Files

set types. For general information about the HDF Import tool, see “Using
the HDF Import Tool” on page 6-63.

• “HDF Scientific Data Sets (SD)” on page 6-69

• “HDF Vdata” on page 6-70

• “HDF-EOS Grid Data” on page 6-72

• “HDF-EOS Point Data” on page 6-77

• “HDF-EOS Swath Data” on page 6-77

• “HDF Raster Image Data” on page 6-81

Note To use these data subsetting options effectively, you must understand
the HDF and HDF-EOS data formats. Therefore, use this documentation
in conjunction with the HDF documentation (www.hdfgroup.org) and the
HDF-EOS documentation (www.hdfeos.org).

HDF Scientific Data Sets (SD)
The HDF scientific data set (SD) is a group of data structures used to store
and describe multidimensional arrays of scientific data. Using the HDF
Import Tool subsetting parameters, you can import a subset of an HDF
scientific data set by specifying the location, range, and number of values to
be read along each dimension.

6-69

http://www.hdfgroup.org
http://www.hdfeos.org

6 Scientific Data

�#$������
 �������

��������

The subsetting parameters are:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

HDF Vdata
HDF Vdata data sets provide a framework for storing customized tables.
A Vdata table consists of a collection of records whose values are stored in
fixed-length fields. All records have the same structure and all values in
each field have the same data type. Each field is identified by a name. The
following figure illustrates a Vdata table.

6-70

Importing Hierarchical Data Format (HDF4) Files

��/ �� �

�

+�

0

� �� 0

	 	 1

2

��������

3%����

�����

You can import a subset of an HDF Vdata data set in the following ways:

• Specifying the name of the field that you want to import

• Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for
Vdata.

� %��(����������#$��

� %��(��&����
$����������

� %��(�&������(
�%�����������

6-71

6 Scientific Data

HDF-EOS Grid Data
In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a
known map projection. The HDF Import Tool supports the following mutually
exclusive subsetting options for Grid data:

• “Direct Index” on page 6-72

• “Geographic Box” on page 6-73

• “Interpolation” on page 6-74

• “Pixels” on page 6-75

• “Tile” on page 6-75

• “Time” on page 6-75

• “User-Defined” on page 6-76

To access these options, click the Subsetting method menu in the importing
and subsetting pane.

���%.�&����
��� �����

Direct Index. You can import a subset of an HDF-EOS Grid data set by
specifying the location, range, and number of values to be read along each
dimension.

6-72

Importing Hierarchical Data Format (HDF4) Files

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

Geographic Box. You can import a subset of an HDF-EOS Grid data set
by specifying the rectangular area of the grid that you are interested in. To
define this rectangular area, you must specify two points, using longitude and
latitude in decimal degrees. These points are two corners of the rectangular
area. Typically, Corner 1 is the upper-left corner of the box, and Corner 2
is the lower-right corner of the box.

6-73

6 Scientific Data

Optionally, you can further define the subset of data you are interested in
by using Time parameters (see “Time” on page 6-75) or by specifying other
User-Defined subsetting parameters (see “User-Defined” on page 6-76).

Interpolation. Interpolation is the process of estimating a pixel value at a
location in between other pixels. In interpolation, the value of a particular
pixel is determined by computing the weighted average of some set of pixels
in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points
that are corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

6-74

Importing Hierarchical Data Format (HDF4) Files

Pixels. You can import a subset of the pixels in a Grid data set by defining
a rectangular area over the grid. You define the region used for bilinear
interpolation by specifying two points that are corners of the interpolation
area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

Tile. In HDF-EOS Grid data, a rectilinear grid overlays a map. Each
rectangle defined by the horizontal and vertical lines of the grid is referred to
as a tile. If the HDF-EOS Grid data is stored as tiles, you can import a subset
of the data by specifying the coordinates of the tile you are interested in.
Tile coordinates are 1-based, with the upper-left corner of a two-dimensional
data set identified as 1,1. In a three-dimensional data set, this tile would be
referenced as 1,1,1.

Time. You can import a subset of the Grid data set by specifying a time
period. You must specify both the start time and the stop time (the endpoint
of the time span). The units (hours, minutes, seconds) used to specify the time
are defined by the data set.

6-75

6 Scientific Data

Along with these time parameters, you can optionally further define the
subset of data to import by supplying user-defined parameters.

User-Defined. You can import a subset of the Grid data set by specifying
user-defined subsetting parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

6-76

Importing Hierarchical Data Format (HDF4) Files

HDF-EOS Point Data
HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS
Point data set by specifying field names and level. Optionally, you can refine
the subsetting by specifying the range of records you want to import, by
defining a rectangular area, or by specifying a time period. For information
about specifying a rectangular area, see “Geographic Box” on page 6-73. For
information about subsetting by time, see “Time” on page 6-75.

HDF-EOS Swath Data
HDF-EOS Swath data is data that is produced by a satellite as it traces a path
over the earth. This path is called its ground track. The sensor aboard the
satellite takes a series of scans perpendicular to the ground track. Swath data
can also include a vertical measure as a third dimension. For example, this
vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting
options for Swath data:

• “Direct Index” on page 6-78

• “Geographic Box” on page 6-79

• “Time” on page 6-80

• “User-Defined” on page 6-80

To access these options, click the Subsetting method menu in the
Importing and Subsetting pane.

6-77

6 Scientific Data

���%.�&����
��%�����#$������
� ����

Direct Index. You can import a subset of an HDF-EOS Swath data set by
specifying the location, range, and number of values to be read along each
dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

6-78

Importing Hierarchical Data Format (HDF4) Files

Geographic Box. You can import a subset of an HDF-EOS Swath data
set by specifying the rectangular area of the grid that you are interested in
and by specifying the selection Mode.

You define the rectangular area by specifying two points that specify two
corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track
Inclusion and the Geolocation mode. The Cross Track Inclusion value
determines how much of the area of the geographic box that you define must
fall within the boundaries of the swath.

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.

• Midpoint— At least half of the box overlaps with the swath.

6-79

6 Scientific Data

• Endpoint— All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data
must be in the same swath.

Select from these values:

• Internal— Geolocation fields and data fields must be in the same swath.

• External— Geolocation fields and data fields can be in different swaths.

Time. You can optionally also subset swath data by specifying a time period.
The units used (hours, minutes, seconds) to specify the time are defined by
the data set

User-Defined. You can optionally also subset a swath data set by specifying
user-defined parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

6-80

Importing Hierarchical Data Format (HDF4) Files

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

HDF Raster Image Data
For 8-bit HDF raster image data, you can specify the colormap.

6-81

6 Scientific Data

Exporting to Hierarchical Data Format (HDF4) Files

In this section...

“Overview” on page 6-82

“Mapping HDF4 to MATLAB Syntax” on page 6-83

“Step 1: Creating an HDF4 File” on page 6-84

“Step 2: Creating an HDF4 Data Set” on page 6-84

“Step 3: Writing MATLAB Data to an HDF4 File” on page 6-86

“Step 4: Writing Metadata to an HDF4 File” on page 6-88

“Step 5: Closing HDF4 Data Sets” on page 6-90

“Step 6: Closing an HDF4 File” on page 6-90

“Using the MATLAB HDF4 Utility API” on page 6-90

Overview
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

This section describes how to use MATLAB functions to access the HDF4
Application Programming Interfaces (APIs). These APIs are libraries of C
routines. To import or export data, you must use the functions in the HDF4
API associated with the particular HDF4 data type you are working with.
Each API has a particular programming model, that is, a prescribed way
to use the routines to write data sets to the file. To illustrate this concept,
this section describes the programming model of one particular HDF4 API:
the HDF4 Scientific Data (SD) API. For a complete list of the HDF4 APIs

6-82

http://www.hdfgroup.org
http://www.hdfeos.org

Exporting to Hierarchical Data Format (HDF4) Files

supported by MATLAB and the functions you use to access each one, see
the hdf reference page.

Note This section does not attempt to describe all HDF4 features and
routines. To use the MATLAB HDF4 functions effectively, you must refer to
the official NCSA documentation at the HDF Web site (www.hdfgroup.org).

Mapping HDF4 to MATLAB Syntax
Each HDF4 API includes many individual routines that you use to read
data from files, write data to files, and perform other related functions. For
example, the HDF4 Scientific Data (SD) API includes separate C routines to
open (SDopen), close (SDend), and read data (SDreaddata).

Instead of supporting each routine in the HDF4 APIs, MATLAB provides a
single function that serves as a gateway to all the routines in a particular
HDF4 API. For example, the HDF Scientific Data (SD) API includes the C
routine SDend to close an HDF4 file:

status = SDend(sd_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the SD API, hdfsd. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfsd('end',sd_id); % MATLAB code

Some HDF4 API routines use output arguments to return data. Because
MATLAB does not support output arguments, you must specify these
arguments as return values.

For example, the SDfileinfo routine returns data about an HDF4 file in two
output arguments, ndatasets and nglobal_atts. Here is the C code:

status = SDfileinfo(sd_id, ndatasets, nglobal_atts);

To call this routine from MATLAB, change the output arguments into return
values:

6-83

http://www.hdfgroup.org

6 Scientific Data

[ndatasets, nglobal_atts, status] = hdfsd('fileinfo',sd_id);

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

Step 1: Creating an HDF4 File
To export MATLAB data in HDF4 format, you must first create an HDF4 file,
or open an existing one. In the HDF4 SD API, you use the SDstart routine.
In MATLAB, use the hdfsd function, specifying start as the first argument.
As other arguments, specify

• A text string specifying the name you want to assign to the HDF4 file (or
the name of an existing HDF4 file)

• A text string specifying the HDF4 SD interface file access mode

For example, this code creates an HDF4 file named mydata.hdf:

sd_id = hdfsd('start','mydata.hdf','DFACC_CREATE');

When you specify the DFACC_CREATE access mode, SDstart creates the file
and initializes the HDF4 SD multifile interface, returning an HDF4 SD file
identifier, named sd_id in the example.

If you specify DFACC_CREATE mode and the file already exists, SDstart fails,
returning -1. To open an existing HDF4 file, you must use HDF4 read or
write modes. For information about using SDstart in these modes, see “Step
1: Opening the HDF4 File” on page 6-58.

Step 2: Creating an HDF4 Data Set
After creating the HDF4 file, or opening an existing one, you must create a
data set in the file for each MATLAB array you want to export. If you are
writing data to an existing data set, you can skip ahead to the next step.

In the HDF4 SD API, you use the SDcreate routine to create data sets. In
MATLAB, you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, 'create' in this case

6-84

Exporting to Hierarchical Data Format (HDF4) Files

• Valid HDF4 SD file identifier, sd_id, returned by SDstart

• Name you want assigned to the data set

• Data type of the data set.

• Number of dimensions in the data set. This is called the rank of the data
set in HDF4 terminology.

• Size of each dimension, specified as a vector

Once you create a data set, you cannot change its name, data type, or
dimensions.

For example, to create a data set in which you can write the following
MATLAB 3-by-5 array of doubles,

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];

you could call hdfsd, specifying as arguments 'create' and a valid HDF
file identifier, sd_id. In addition, set the values of the other arguments as
in this code fragment:

ds_name = 'A';
ds_type = 'double';
ds_rank = ndims(A);
ds_dims = fliplr(size(A));

sds_id = hdfsd('create',sd_id,ds_name,ds_type,ds_rank,ds_dims);

If SDcreate can successfully create the data set, it returns an HDF4 SD data
set identifier, (sds_id). Otherwise, SDcreate returns -1.

In this example, note the following:

• The data type you specify in ds_type must match the data type of the
MATLAB array that you want to write to the data set. In the example, the
array is of class double so the value of ds_type is set to 'double'. If you
wanted to use another data type, such as uint8, convert the MATLAB
array to use this data type,

A = uint8([1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15]);

6-85

6 Scientific Data

and specify the name of the MATLAB data type, uint8 in this case, in the
ds_type argument.

ds_type = 'uint8';

• The code fragment reverses the order of the values in the dimensions
argument (ds_dims). This processing is necessary because the MATLAB
size function returns the dimensions in column-major order and HDF4
expects to receive dimensions in row-major order.

Step 3: Writing MATLAB Data to an HDF4 File
After creating an HDF4 file and creating a data set in the file, you can write
data to the entire data set or just a portion of the data set. In the HDF4 SD
API, you use the SDwritedata routine. In MATLAB, use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, 'writedata' in this case

• Valid HDF4 SD data set identifier, sds_id, returned by SDcreate

• Location in the data set where you want to start writing data, called the
start vector in HDF4 terminology

• Number of elements along each dimension to skip between each write
operation, called the stride vector in HDF4 terminology

• Total number of elements to write along each dimension, called the edges
vector in HDF4 terminology

• MATLAB array to be written

Note You must specify the values of the start, stride, and edges arguments
in row-major order, rather than the column-major order used in MATLAB.
Note how the example uses fliplr to reverse the order of the dimensions in
the vector returned by the size function before assigning it as the value of
the edges argument.

The values you assign to these arguments depend on the MATLAB array
you want to export. For example, the following code fragment writes this
MATLAB 3-by-5 array of doubles,

6-86

Exporting to Hierarchical Data Format (HDF4) Files

A = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15];

into an HDF4 file:

ds_start = zeros(1:ndims(A)); % Start at the beginning
ds_stride = []; % Write every element.
ds_edges = fliplr(size(A)); % Reverse the dimensions.

stat = hdfsd('writedata',sds_id,...
ds_start, ds_stride, ds_edges, A);

If it can write the data to the data set, SDwritedata returns 0; otherwise,
it returns -1.

Note SDwritedata queues write operations. To ensure that these queued
write operations are executed, you must close the file, using the SDend routine.
See “Step 6: Closing an HDF4 File” on page 6-90 for more information. As a
convenience, MATLAB provides a function, MLcloseall, that you can use to
close all open data sets and file identifiers with a single call. See “Using the
MATLAB HDF4 Utility API” on page 6-90 for more information.

To write less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start writing data and how much data you want
to write.

For example, the following code fragment uses SDwritedata to replace the
values of the entire second row of the sample data set:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

with the vector B:

B = [9 9 9 9 9];

In the example, the start vector specifies that you want to start the write
operation in the first column of the second row. Note how HDF4 uses
zero-based indexing and specifies the column dimension first. In MATLAB,

6-87

6 Scientific Data

you would specify this location as (2,1). The edges argument specifies the
dimensions of the data to be written. Note that the size of the array of data
to be written must match the edge specification.

ds_start = [0 1]; % Start writing at the first column, second row.

ds_stride = []; % Write every element.

ds_edges = [5 1]; % Each row is a 1-by-5 vector.

stat = hdfsd('writedata',sds_id,ds_start,ds_stride,ds_edges,B);

Step 4: Writing Metadata to an HDF4 File
You can optionally include information in an HDF4 file, called attributes, that
describes the file and its contents. Using the HDF4 SD API, you can associate
attributes with three types of HDF4 objects:

• An entire HDF4 file — File attributes, also called global attributes,
generally contain information pertinent to all the data sets in the file.

• A data set in an HDF4 file — Data set attributes, also called local
attributes, describe individual data sets.

• A dimension of a data set — Dimension attributes provide information
about one particular dimension of a data set.

To create an attribute in the HDF4 SD API, use the SDsetattr routine.
In MATLAB, use the hdfsd function, specifying 'setattr' as the first
argument. As other arguments, specify

• A valid HDF4 SD identifier associated with the object. This value can
be a file identifier (sd_id), a data set identifier (sds_id), or a dimension
identifier (dim_id).

• A text string that defines the name of the attribute.

• The attribute value.

For example, this code creates a global attribute, named my_global_attr,
and associates it with the HDF4 file identified by sd_id:

status = hdfsd('setattr',sd_id,'my_global_attr','my_attr_val');

6-88

Exporting to Hierarchical Data Format (HDF4) Files

Note In the NCSA documentation, the SDsetattr routine has two additional
arguments: data type and the number of values in the attribute. When calling
this routine from MATLAB, you do not have to include these arguments.
The MATLAB HDF4 function can determine the data type and size of the
attribute from the value you specify.

The SD interface supports predefined attributes that have reserved names
and, in some cases, data types. Predefined attributes are identical to
user-defined attributes except that the HDF4 SD API has already defined
their names and data types. For example, the HDF4 SD API defines an
attribute, named cordsys, in which you can specify the coordinate system
used by the data set. Possible values of this attribute include the text strings
'cartesian', 'polar', and 'spherical'.

Predefined attributes can be useful because they establish conventions that
applications can depend on. The HDF4 SD API supports predefined attributes
for data sets and dimensions only; there are no predefined attributes for files.
For a complete list of the predefined attributes, see the NCSA documentation.

In the HDF4 SD API, you create predefined attributes the same way you
create user-defined attributes, using the SDsetattr routine. In MATLAB, use
the hdfsd function, specifying setattr as the first argument:

attr_name = 'cordsys';
attr_value = 'polar';

status = hdfsd('setattr',sds_id,attr_name,attr_value);

The HDF4 SD API also includes specialized functions for writing and
reading the predefined attributes. These specialized functions, such as
SDsetdatastrs, are sometimes easier to use, especially when you are reading
or writing multiple related predefined attributes. You must use specialized
functions to read or write the predefined dimension attributes.

You can associate multiple attributes with a single HDF4 object. HDF4
maintains an attribute index for each object. The attribute index is
zero-based. The first attribute has index value 0, the second has index value
1, and so on. You access an attribute by its index value.

6-89

6 Scientific Data

Each attribute has the format name=value, where name (called label in
HDF4 terminology) is a text string up to 256 characters in length and value
contains one or more entries of the same data type. A single attribute can
have multiple values.

Step 5: Closing HDF4 Data Sets
After writing data to a data set in an HDF4 file, you must close access to the
data set. In the HDF4 SD API, you use the SDendaccess routine to close a
data set. In MATLAB, use the hdfsd function, specifying endaccess as the
first argument. As the only other argument, specify a valid HDF4 SD data set
identifier, sds_id in this example:

stat = hdfsd('endaccess',sds_id);

Step 6: Closing an HDF4 File
After writing data to a data set and closing the data set, you must also close
the HDF4 file. In the HDF4 SD API, you use the SDend routine. In MATLAB,
use the hdfsd function, specifying end as the first argument. As the only other
argument, specify a valid HDF4 SD file identifier, sd_id in this example:

stat = hdfsd('end',sd_id);

You must close access to all the data sets in an HDF4 file before closing it.

Note Closing an HDF4 file executes all the write operations that have been
queued using SDwritedata. As a convenience, the MATLAB HDF Utility
API provides a function that can close all open data set and file identifiers
with a single call. See “Using the MATLAB HDF4 Utility API” on page 6-90
for more information.

Using the MATLAB HDF4 Utility API
In addition to the standard HDF4 APIs, listed in the hdfreference page,
MATLAB supports utility functions that are designed to make it easier to use
HDF4 in the MATLAB environment.

For example, using the gateway function to the MATLAB HDF4 utility API,
hdfml, and specifying the name of the listinfo routine as an argument, you

6-90

Exporting to Hierarchical Data Format (HDF4) Files

can view all the currently open HDF4 identifiers. MATLAB updates this list
whenever HDF identifiers are created or closed. In the following example
only two identifiers are open.

hdfml('listinfo')
No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
262144

Open scientific data file identifiers:
393216

No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Closing All Open HDF4 Identifiers
To close all the currently open HDF4 identifiers in a single call, use the
gateway function to the MATLAB HDF4 utility API, hdfml, specifying the
name of the closeall routine as an argument. The following example closes
all the currently open HDF4 identifiers.

hdfml('closeall')

6-91

6 Scientific Data

6-92

7

Audio and Video

• “Read and Get Information About Audio Files” on page 7-2

• “Record and Play Audio” on page 7-3

• “Get Information about Video Files” on page 7-7

• “Read Video Files” on page 7-8

• “Convert Between Image Sequences and Video” on page 7-12

• “Export to Audio and Video” on page 7-17

• “Characteristics of Audio Files” on page 7-19

7 Audio and Video

Read and Get Information About Audio Files
Use the audioread function to read audio data from a file. audioread can
support WAVE, OGG, FLAC, AU, MP3, and MPEG-4 AAC files.

You also can read WAV, AU, or SND files interactively. Select Import
Data or double-click the file name in the Current Folder browser.

To get information about audio files, use audioinfo. The audioinfo function
returns information such as the number of audio channels, sample rate,
duration, bits per sample, bit rate, and metadata, as applicable.

7-2

Record and Play Audio

Record and Play Audio

In this section...

“Record Audio” on page 7-3

“Play Audio” on page 7-4

“Recording or Playing Audio within a Function” on page 7-5

Record Audio
To record data from an audio input device (such as a microphone connected to
your system) for processing in MATLAB:

1 Create an audiorecorder object.

2 Call the record or recordblocking method, where:

• record returns immediate control to the calling function or the command
prompt even as recording proceeds. Specify the length of the recording
in seconds, or end the recording with the stop method. Optionally, call
the pause and resume methods.

• recordblocking retains control until the recording is complete. Specify
the length of the recording in seconds.

3 Create a numeric array corresponding to the signal data using the
getaudiodata method.

For example, connect a microphone to your system and record your voice for 5
seconds. Capture the numeric signal data and create a plot:

% Record your voice for 5 seconds.
recObj = audiorecorder;
disp('Start speaking.')
recordblocking(recObj, 5);
disp('End of Recording.');

% Play back the recording.
play(recObj);

7-3

7 Audio and Video

% Store data in double-precision array.
myRecording = getaudiodata(recObj);

% Plot the samples.
plot(myRecording);

Specifying the Quality of the Recording
By default, an audiorecorder object uses a sample rate of 8000 hertz, a
depth of 8 bits (8 bits per sample), and a single audio channel. These settings
minimize the required amount of data storage. For higher quality recordings,
increase the sample rate or bit depth.

For example, typical compact disks use a sample rate of 44,100 hertz and
a 16-bit depth. Create an audiorecorder object to record in stereo (two
channels) with those settings:

myRecObj = audiorecorder(44100, 16, 2);

For more information on the available properties and values, see the
audiorecorder reference page.

Play Audio
After you import or record audio, MATLAB supports several ways to listen
to the data:

• For simple playback using a single function call, use sound or soundsc. For
example, load a sample MAT-file that contains signal and sample rate
data, and listen to the audio:

load chirp.mat;
sound(y, Fs);

• For more flexibility during playback, including the ability to pause, resume,
or define callbacks, use the audioplayer function. Create an audioplayer
object, then call methods to play the audio. For example, listen to the gong
sample file:

load gong.mat;
gong = audioplayer(y, Fs);

7-4

Record and Play Audio

play(gong);

For an additional example, see “Recording or Playing Audio within a
Function” on page 7-5.

If you do not specify the sample rate, sound plays back at 8192 hertz. For any
playback, specify smaller sample rates to play back more slowly, and larger
sample rates to play back more quickly.

Note Most sound cards support sample rates between approximately 5,000
and 48,000 hertz. Specifying sample rates outside this range can produce
unexpected results.

Recording or Playing Audio within a Function
If you create an audioplayer or audiorecorder object inside a function,
the object exists only for the duration of the function. For example, create a
player function called playFile and a simple callback function showSeconds:

function playFile(myfile)
load(myfile);

obj = audioplayer(y, Fs);
obj.TimerFcn = 'showSeconds';
obj.TimerPeriod = 1;

play(obj);
end

function showSeconds
disp('tick')

end

Call playFile from the command prompt to play the file handel.mat:

playFile('handel.mat')

At the recorded sample rate of 8192 samples per second, playing the 73113
samples in the file takes approximately 8.9 seconds. However, the playFile

7-5

7 Audio and Video

function typically ends before playback completes, and clears the audioplayer
object obj.

To ensure complete playback or recording, consider the following options:

• Use playblocking or recordblocking instead of play or record. The
blocking methods retain control until playing or recording completes. If you
block control, you cannot issue any other commands or methods (such as
pause or resume) during the playback or recording.

• Create an output argument for your function that generates an object in
the base workspace. For example, modify the playFile function to include
an output argument:

function obj = playFile(myfile)

Call the function:

h = playFile('handel.mat');

Because h exists in the base workspace, you can pause playback from the
command prompt:

pause(h)

7-6

Get Information about Video Files

Get Information about Video Files
VideoReader creates an object that contains properties of the video file,
including the duration, frame rate, format, height, and width. To view these
properties, or store them in a structure, use the get method. For example, get
the properties of the file xylophone.mpg:

xyloObj = VideoReader('xylophone.mpg');
info = get(xyloObj)

The get function returns:

info =
Duration: 4.7020

Name: 'xylophone.mpg'
Path: [1x75 char]
Tag: ''

Type: 'VideoReader'
UserData: []

BitsPerPixel: 24
FrameRate: 29.9700

Height: 240
NumberOfFrames: 141

VideoFormat: 'RGB24'
Width: 320

To access a specific property of the object, such as Duration, use dot notation
as follows:

duration = xyloObj.Duration;

Note For files with a variable frame rate, VideoReader cannot return
the number of frames until you read the last frame of the file. For more
information, see “Reading Variable Frame Rate Video” on page 7-9.

See Also get |

7-7

7 Audio and Video

Read Video Files

In this section...

“Importing Video Data from a File” on page 7-8

“Processing Frames of a Video File” on page 7-8

“Reading Variable Frame Rate Video” on page 7-9

“Supported Video File Formats” on page 7-10

Importing Video Data from a File
To import video data from a file, construct a reader object with VideoReader
and read selected frames with the read function.

For example, import all frames in the file xylophone.mpg:

xyloObj = VideoReader('xylophone.mpg');
vidFrames = read(xyloObj);

It is not necessary to close the multimedia object.

Processing Frames of a Video File
A typical video contains many frames. To save memory, process a video one
frame at a time. For faster processing, preallocate memory to store the video
data.

For example, convert the file xylophone.mpg to a MATLAB movie, and play
it with the movie function:

xyloObj = VideoReader('xylophone.mpg');

nFrames = xyloObj.NumberOfFrames;
vidHeight = xyloObj.Height;
vidWidth = xyloObj.Width;

% Preallocate movie structure.
mov(1:nFrames) = ...

struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),...

7-8

Read Video Files

'colormap', []);

% Read one frame at a time.
for k = 1 : nFrames

mov(k).cdata = read(xyloObj, k);
end

% Play back the movie once at the video's frame rate.
movie(mov, 1, xyloObj.FrameRate);

Reading Variable Frame Rate Video
Some files store video at a variable frame rate, including many Windows
Media Video files. For these files, VideoReader cannot determine the number
of frames until you read the last frame.

For example, consider a hypothetical file VarFrameRate.wmv that has a
variable frame rate. A call to VideoReader to create the multimedia object
such as

obj = VideoReader('VarFrameRate.wmv')

returns the following warning and summary information:

Warning: Unable to determine the number of frames in this file.

Summary of Multimedia Reader Object for 'VarFrameRate.wmv'.

Video Parameters: 23.98 frames per second, RGB24 1280x720.
Unable to determine video frames available.

Counting Frames
To determine the number of frames in a variable frame rate file, call read
with the following syntax:

lastFrame = read(obj, inf);

This command reads the last frame and sets the NumberOfFrames property of
the multimedia object. Because VideoReader must decode all video data to
count the frames reliably, the call to read sometimes takes a long time to run.

7-9

7 Audio and Video

Specifying the Frames to Read
For any video file, you can specify the frames to read with a range of indices.
Usually, if you request a frame beyond the end of the file, read returns an
error.

However, if the file uses a variable frame rate, and the requested range
straddles the end of the file, read returns a partial result. For example, given
a file with 2825 frames associated with the multimedia object obj, a call to
read frames 2800 - 3000 as follows:

images = read(obj, [2800 3000]);

returns:

Warning: The end of file was reached before the
requested frames were read completely.
Frames 2800 through 2825 were returned.

Supported Video File Formats
The VideoReader function reference page lists file formats that VideoReader
usually can read, including AVI, MPEG-1, and Motion JPEG 2000. Sometimes
VideoReader can read files in unlisted formats, and sometimes it cannot
read files in listed formats.

For video data, the term “file format” often refers either to the container
format or the codec. A container format describes the layout of the file, while a
codec describes how to code/decode the data. Many container formats support
multiple codecs.

To read a video file, any application must:

• Recognize the container format (such as AVI). The VideoReader function
reference page lists the supported container formats.

• Have access to the codec associated with the particular file. Some codecs are
part of standard Windows and Macintosh system installations, and allow
you to play video in Windows Media Player or QuickTime. VideoReader
can access most, but not all, of these codecs.

7-10

Read Video Files

• Properly interpret the codec. VideoReader cannot always read files
associated with codecs that were not part of your original system
installation.

To see the codec associated with a video file, use mmfileinfo and view the
Format field. For example, given a hypothetical AVI file that uses the Indeo®

5 codec, the following code:

info = mmfileinfo('myfile.avi');
info.Video.Format

returns

ans =
IV50

See Also VideoReader | mmfileinfo | movie

7-11

7 Audio and Video

Convert Between Image Sequences and Video
This example shows how to convert between video files and sequences of
image files using VideoReader and VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames
to image files using VideoReader and the imwrite function. Then, convert
the image files to an AVI file using VideoWriter.

Setup

Create a temporary working folder to store the image sequence.

workingDir = tempname;
mkdir(workingDir);
mkdir(workingDir,'images');

Construct a VideoReader Object

Create a VideoReader object to use for reading frames from the file.

shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array
named img. Write out each image to a JPEG file with a name in the form
imgN.jpg, where N is the frame number:

img1.jpg
img2.jpg
...
img121.jpg

for ii = 1:shuttleVideo.NumberOfFrames
img = read(shuttleVideo,ii);

% Write out to a JPEG file (img1.jpg, img2.jpg, etc.)
imwrite(img,fullfile(workingDir,'images',sprintf('img%d.jpg',ii)));

end

7-12

Convert Between Image Sequences and Video

Read and Sort the Image Sequence into MATLAB

Find all the JPEG file names in the images folder. Convert the set of image
names to a cell array.

imageNames = dir(fullfile(workingDir,'images','*.jpg'));
imageNames = {imageNames.name}';

Notice that the image file names are not in numeric order.

disp(imageNames(1:10));

'img1.jpg'
'img10.jpg'
'img100.jpg'
'img101.jpg'
'img102.jpg'
'img103.jpg'
'img104.jpg'
'img105.jpg'
'img106.jpg'
'img107.jpg'

To sort the file names, extract the frame numbers from the file names and
use them to sort the array.

First, match any file names that contain a sequence of numeric digits.
Convert the strings to doubles.

imageStrings = regexp([imageNames{:}],'(\d*)','match');
imageNumbers = str2double(imageStrings);

Sort the frame numbers from lowest to highest. The sort function returns an
index matrix that indicates how to order the associated files.

[~,sortedIndices] = sort(imageNumbers);
sortedImageNames = imageNames(sortedIndices);

The sequence file names are now sorted.

7-13

7 Audio and Video

disp(sortedImageNames(1:10));

'img1.jpg'
'img2.jpg'
'img3.jpg'
'img4.jpg'
'img5.jpg'
'img6.jpg'
'img7.jpg'
'img8.jpg'
'img9.jpg'
'img10.jpg'

Create a New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by
default.

outputVideo = VideoWriter(fullfile(workingDir,'shuttle_out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo);

Loop through the image sequence, load each image, and then write it to the
video.

for ii = 1:length(sortedImageNames)
img = imread(fullfile(workingDir,'images',sortedImageNames{ii}));

writeVideo(outputVideo,img);
end

Finalize the video file.

close(outputVideo);

View the Final Video

Construct a reader object.

shuttleAvi = VideoReader(fullfile(workingDir,'shuttle_out.avi'));

7-14

Convert Between Image Sequences and Video

Create a MATLAB movie struct from the video frames.

mov(shuttleAvi.NumberOfFrames) = struct('cdata',[],'colormap',[]);
for ii = 1:shuttleAvi.NumberOfFrames

mov(ii) = im2frame(read(shuttleAvi,ii));
end

Resize the current figure and axes based on the video’s width and height,
and view the first frame of the movie.

set(gcf,'position', [150 150 shuttleAvi.Width shuttleAvi.Height])
set(gca,'units','pixels');
set(gca,'position',[0 0 shuttleAvi.Width shuttleAvi.Height])

image(mov(1).cdata,'Parent',gca);
axis off;

Play back the movie once at the video’s frame rate.

movie(mov,1,shuttleAvi.FrameRate);

Credits

7-15

7 Audio and Video

Video of the Space Shuttle courtesy of NASA.

7-16

Export to Audio and Video

Export to Audio and Video

In this section...

“Exporting to Audio Files” on page 7-17

“Exporting Video to AVI Files” on page 7-17

Exporting to Audio Files
In MATLAB, audio data is simply numeric data that you can export using
standard MATLAB data export functions, such as save.

You also can export audio data to files in specific file formats using the
audiowrite function.

Exporting Video to AVI Files
To create an Audio/Video Interleaved (AVI) file from MATLAB graphics
animations or from still images, follow these steps:

1 Create a VideoWriter object by calling the VideoWriter function. For
example:

myVideo = VideoWriter('myfile.avi');

By default, VideoWriter prepares to create an AVI file using Motion JPEG
compression. To create an uncompressed file, specify the Uncompressed
AVI profile, as follows:

uncompressedVideo = VideoWriter('myfile.avi', 'Uncompressed AVI');

2 Optionally, adjust the frame rate (number of frames to display per second)
or the quality setting (a percentage from 0 through 100). For example:

myVideo.FrameRate = 15; % Default 30
myVideo.Quality = 50; % Default 75

7-17

7 Audio and Video

Note Quality settings only apply to compressed files. Higher quality
settings result in higher video quality, but also increase the file size. Lower
quality settings decrease the file size and video quality.

3 Open the file:

open(myVideo);

Note After you call open, you cannot change the frame rate or quality
settings.

4 Write frames, still images, or an existing MATLAB movie to the file
by calling writeVideo. For example, suppose that you have created a
MATLAB movie called myMovie. Write your movie to a file:

writeVideo(myVideo, myMovie);

Alternatively, writeVideo accepts single frames or arrays of still images
as the second input argument. For more information, see the writeVideo
reference page.

5 Close the file:

close(myVideo);

7-18

Characteristics of Audio Files

Characteristics of Audio Files
The audio signal in a file represents a series of samples that capture the
amplitude of the sound over time. The sample rate is the number of discrete
samples taken per second and given in hertz. The precision of the samples,
measured by the bit depth (number of bits per sample), depends on the
available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in
an m-by-1 column vector, and stereo data in an m-by-2 matrix. In either case, m
is the number of samples. For stereo data, the first column contains the left
channel, and the second column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some
cases, particularly when the audio hardware does not support high bit depths,
audio files store the values as 8-bit or 16-bit integers. The range of the sample
values depends on the available number of bits. For example, samples stored
as uint8 values can range from 0 to 255 (28 – 1). The MATLAB sound and
soundsc functions support only single- or double-precision values between
-1 and 1. Other audio functions support multiple data types, as indicated on
the function reference pages.

7-19

7 Audio and Video

7-20

8

XML Documents

• “Importing XML Documents” on page 8-2

• “Exporting to XML Documents” on page 8-6

8 XML Documents

Importing XML Documents
To read an XML file from your local disk or from a URL, use the xmlread
function. xmlread returns the contents of the file in a Document Object Model
(DOM) node. For more information, see:

• “What Is an XML Document Object Model (DOM)?” on page 8-2

• “Example — Finding Text in an XML File” on page 8-3

What Is an XML Document Object Model (DOM)?
In a Document Object Model, every item in an XML file corresponds to a node.
The properties and methods for DOM nodes (that is, the way you create and
access nodes) follow standards set by the World Wide Web consortium.

For example, consider this sample XML file:

<productinfo

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://www.mathworks.com/namespace/info/v1/info.xsd">

<!-- This is a sample info.xml file. -->

<list>

<listitem>

<label>Import Wizard</label>

<callback>uiimport</callback>

<icon>ApplicationIcon.GENERIC_GUI</icon>

</listitem>

<listitem>

<label>Profiler</label>

<callback>profile viewer</callback>

<icon>ApplicationIcon.PROFILER</icon>

</listitem>

</list>

</productinfo>

8-2

Importing XML Documents

The information in the file maps to the following types of nodes in a DOM:

• Element nodes— Corresponds to tag names. In the sample info.xml file,
these tags correspond to element nodes:

- productinfo

- list

- listitem

- label

- callback

- icon

In this case, the list element is the parent of listitem element child
nodes. The productinfo element is the root element node.

• Text nodes— Contains values associated with element nodes. Every text
node is the child of an element node. For example, the Import Wizard text
node is the child of the first label element node.

• Attribute nodes — Contains name and value pairs associated with an
element node. For example, xmlns:xsi is the name of an attribute and
http://www.w3.org/2001/XMLSchema-instance is its value. Attribute
nodes are not parents or children of any nodes.

• Comment nodes — Includes additional text in the file, in the form
<!--Sample comment-->.

• Document nodes — Corresponds to the entire file. Use methods on the
document node to create new element, text, attribute, or comment nodes.

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

Example — Finding Text in an XML File
The full matlabroot/toolbox/matlab/general/info.xml file contains
several listitem elements, such as:

<listitem>
<label>Import Wizard</label>

8-3

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

8 XML Documents

<callback>uiimport</callback>
<icon>ApplicationIcon.GENERIC_GUI</icon>
</listitem>

One of the label elements has the child text Plot Tools. Suppose that you
want to find the text for the callback element in the same listitem. Follow
these steps:

1 Initialize your variables, and call xmlread to obtain the document node:

findLabel = 'Plot Tools';
findCbk = '';

xDoc = xmlread(fullfile(matlabroot, ...
'toolbox','matlab','general','info.xml'));

2 Find all the listitem elements. The getElementsByTagName method returns
a deep list that contains information about the child nodes:

allListitems = xDoc.getElementsByTagName('listitem');

Note Lists returned by DOM methods use zero-based indexing.

3 For each listitem, compare the text for the label element to the text you
want to find. When you locate the correct label, get the callback text:

for k = 0:allListitems.getLength-1
thisListitem = allListitems.item(k);

% Get the label element. In this file, each
% listitem contains only one label.
thisList = thisListitem.getElementsByTagName('label');
thisElement = thisList.item(0);

% Check whether this is the label you want.
% The text is in the first child node.
if strcmp(thisElement.getFirstChild.getData, findLabel)

thisList = thisListitem.getElementsByTagName('callback');
thisElement = thisList.item(0);

8-4

Importing XML Documents

findCbk = char(thisElement.getFirstChild.getData);
break;

end

end

4 Display the final results:

if ~isempty(findCbk)
msg = sprintf('Item "%s" has a callback of "%s."',...

findLabel, findCbk);
else

msg = sprintf('Did not find the "%s" item.', findLabel);
end
disp(msg);

For an additional example that creates a structure array to store data from an
XML file, see the xmlread function reference page.

8-5

8 XML Documents

Exporting to XML Documents
To write data to an XML file, use the xmlwrite function. xmlwrite requires
that you describe the file in a Document Object Model (DOM) node. For an
introduction to DOM nodes, see “What Is an XML Document Object Model
(DOM)?” on page 8-2

For more information, see:

• “Creating an XML File” on page 8-6

• “Updating an Existing XML File” on page 8-8

Creating an XML File
Although each file is different, these are common steps for creating an XML
document:

1 Create a document node and define the root element by calling this method:

docNode =
com.mathworks.xml.XMLUtils.createDocument('root_element');

2 Get the node corresponding to the root element by calling
getDocumentElement. The root element node is required for adding child
nodes.

3 Add element, text, comment, and attribute nodes by calling methods on the
document node. Useful methods include:

• createElement

• createTextNode

• createComment

• setAttribute

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

8-6

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

Exporting to XML Documents

4 As needed, define parent/child relationships by calling appendChild on the
parent node.

Tip Text nodes are always children of element nodes. To add a text node, call
createTextNode on the document node, and then call appendChild on the
parent element node.

Example — Creating an XML File with xmlwrite
Suppose that you want to create an info.xml file for the Upslope Area
Toolbox (described in “Display Custom Documentation”), as follows:

<?xml version="1.0" encoding="utf-8"?>

<toc version="2.0">

<tocitem target="upslope_product_page.html">Upslope Area Toolbox<!-- Functions -->

<tocitem target="demFlow_help.html">demFlow</tocitem>

<tocitem target="facetFlow_help.html">facetFlow</tocitem>

<tocitem target="flowMatrix_help.html">flowMatrix</tocitem>

<tocitem target="pixelFlow_help.html">pixelFlow</tocitem>

</tocitem>

</toc>

To create this file using xmlwrite, follow these steps:

1 Create the document node and root element, toc:

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');

2 Identify the root element, and set the version attribute:

toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

3 Add the tocitem element node for the product page. Each tocitem element in
this file has a target attribute and a child text node:

product = docNode.createElement('tocitem');
product.setAttribute('target','upslope_product_page.html');
product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));
toc.appendChild(product)

8-7

8 XML Documents

4 Add the comment:

product.appendChild(docNode.createComment(' Functions '));

5 Add a tocitem element node for each function, where the target is of the
form function_help.html:

functions = {'demFlow','facetFlow','flowMatrix','pixelFlow'};
for idx = 1:numel(functions)

curr_node = docNode.createElement('tocitem');

curr_file = [functions{idx} '_help.html'];
curr_node.setAttribute('target',curr_file);

% Child text is the function name.
curr_node.appendChild(docNode.createTextNode(functions{idx}));
product.appendChild(curr_node);

end

6 Export the DOM node to info.xml, and view the file with the type function:

xmlwrite('info.xml',docNode);
type('info.xml');

Updating an Existing XML File
To change data in an existing file, call xmlread to import the file into a DOM
node. Traverse the node and add or change data using methods defined by the
World Wide Web consortium, such as:

• getElementsByTagName

• getFirstChild

• getNextSibling

• getNodeName

• getNodeType

When the DOM node contains all your changes, call xmlwrite to overwrite
the file.

8-8

Exporting to XML Documents

For a complete list of the methods and properties of
DOM nodes, see the org.w3c.dom package description at
http://download.oracle.com/javase/6/docs/api/.

For examples that use these methods, see:

• “Example — Finding Text in an XML File” on page 8-3

• “Example — Creating an XML File with xmlwrite” on page 8-7

• xmlread and xmlwrite

8-9

http://download.oracle.com/javase/6/docs/api/org/w3c/dom/package-summary.html

8 XML Documents

8-10

9

Memory-Mapping Data
Files

• “Overview of Memory-Mapping” on page 9-2

• “The memmapfile Class” on page 9-7

• “Constructing a memmapfile Object” on page 9-10

• “Reading a Mapped File” on page 9-24

• “Writing to a Mapped File” on page 9-30

• “Deleting a Memory Map” on page 9-38

• “Share Memory Between Applications” on page 9-39

9 Memory-Mapping Data Files

Overview of Memory-Mapping

In this section...

“What Is Memory-Mapping?” on page 9-2

“Benefits of Memory-Mapping” on page 9-2

“When to Use Memory-Mapping” on page 9-4

“Maximum Size of a Memory Map” on page 9-5

“Byte Ordering” on page 9-6

What Is Memory-Mapping?
Memory-mapping is a mechanism that maps a portion of a file, or an entire
file, on disk to a range of addresses within an application’s address space. The
application can then access files on disk in the same way it accesses dynamic
memory. This makes file reads and writes faster in comparison with using
functions such as fread and fwrite.

Another advantage of using memory-mapping in your MATLAB application
is that it enables you to access file data using standard MATLAB indexing
operations. Once you have mapped a file to memory, you can read the contents
of that file using the same type of MATLAB statements used to read variables
from the MATLAB workspace. The contents of the mapped file appear as if
they were an array in the currently active workspace. You simply index into
this array to read or write the desired data from the file.

Benefits of Memory-Mapping
The principal benefits of memory-mapping are efficiency, faster file access,
the ability to share memory between applications, and more efficient coding.

Faster File Access
Accessing files via memory map is faster than using I/O functions such as
fread and fwrite. Data are read and written using the virtual memory
capabilities that are built in to the operating system rather than having to
allocate, copy into, and then deallocate data buffers owned by the process.

9-2

Overview of Memory-Mapping

MATLAB does not access data from the disk when the map is first constructed.
It only reads or writes the file on disk when a specified part of the memory
map is accessed, and then it only reads that specific part. This provides faster
random access to the mapped data.

Efficiency
Mapping a file into memory allows access to data in the file as if that data had
been read into an array in the application’s address space. Initially, MATLAB
only allocates address space for the array; it does not actually read data from
the file until you access the mapped region. As a result, memory-mapped files
provide a mechanism by which applications can access data segments in an
extremely large file without having to read the entire file into memory first.

Efficient Coding Style
Memory-mapping eliminates the need for explicit calls to the fread and
fwrite functions. In MATLAB, if x is a memory-mapped variable, and y is
the data to be written to a file, then writing to the file is as simple as

x.Data = y;

9-3

9 Memory-Mapping Data Files

Sharing Memory Between Applications
Memory-mapped files also provide a mechanism for sharing data between
applications, as shown in the figure below. This is achieved by having each
application map sections of the same file. You can use this feature to transfer
large data sets between MATLAB and other applications.

Also, within a single application, you can map the same segment of a file
more than once.

When to Use Memory-Mapping
Just how much advantage you get from mapping a file to memory depends
mostly on the size and format of the file, the way in which data in the file is
used, and the computer platform you are using.

9-4

Overview of Memory-Mapping

When Memory-Mapping Is Most Useful
Memory-mapping works best with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times

• For small files that you want to read into memory once and access
frequently

• For data that you want to share between applications

• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant
The following types of files do not fully use the benefits of memory-mapping:

• Formatted binary files like HDF or TIFF that require customized readers
are not good for memory-mapping. Describing the data contained in these
files can be a very complex task. Also, you cannot access data directly from
the mapped segment, but must instead create arrays to hold the data.

• Text or ASCII files require that you convert the text in the mapped region
to an appropriate type for the data to be meaningful. This takes up
additional address space.

• Files that are larger than several hundred megabytes in size consume a
significant amount of the virtual address space needed by MATLAB to
process your program. Mapping files of this size may result in MATLAB
reporting out-of-memory errors more often. This is more likely if MATLAB
has been running for some time, or if the memory used by MATLAB
becomes fragmented.

Maximum Size of a Memory Map
Due to limits set by the operating system and MATLAB, the maximum
amount of data you can map with a single instance of a memory map is 2
gigabytes on 32-bit systems, and 256 terabytes on 64-bit systems. If you
need to map more than this limit, you can either create separate maps
for different regions of the file, or you can move the window of one map to
different locations in the file.

9-5

9 Memory-Mapping Data Files

Byte Ordering
Memory-mapping works only with data that have the same byte ordering
scheme as the native byte ordering of your operating system. For example,
because both Linus Torvalds’ Linux and Microsoft Windows systems use
little-endian byte ordering, data created on a Linux system can be read on
Windows systems. You can use the computer function to determine the native
byte ordering of your current system.

9-6

The memmapfile Class

The memmapfile Class

In this section...

“Setting Properties” on page 9-7

“Viewing Properties” on page 9-8

MATLAB implements memory-mapping using an object-oriented class called
memmapfile. The memmapfile class has the properties and methods you need
to map to a file, read and write the file via the map, and remove the map from
memory when you are done.

Setting Properties
There are six properties defined for the memmapfile class. These are shown in
the table below. These properties control which file is being mapped, where in
the file the mapping is to begin and end, how the contents of the file are to be
formatted, and whether or not the file is writable. One property of the file
contains the file data itself.

Property Description Data Type Default

Data Contains the data read from the file or to be written
to the file. (See “Reading a Mapped File” on page
9-24 and “Writing to a Mapped File” on page 9-30)

Any of the
numeric
types

None

Filename Path and name of the file to map into memory. (See
“Selecting the File to Map” on page 9-13)

char array None

Format Format of the contents of the mapped region,
including class, array shape, and variable or field
name by which to access the data. (See “Identifying
the Contents of the Mapped Region” on page 9-14)

char array
or N-by-3
cell array

uint8

Offset Number of bytes from the start of the file to the start
of the mapped region. This number is zero-based.
That is, offset 0 represents the start of the file. Must
be a nonnegative integer value. (See “Setting the
Start of the Mapped Region” on page 9-14)

double 0

9-7

9 Memory-Mapping Data Files

Property Description Data Type Default

Repeat Number of times to apply the specified format to the
mapped region of the file. Must be a positive integer
value or Inf. (See “Repeating a Format Scheme” on
page 9-21)

double Inf

Writable Type of access allowed to the mapped region. Must
be logical 1 or logical 0. (See “Setting the Type of
Access” on page 9-22)

logical false

You can set the values for any property except for Data at the time you call
the memmapfile constructor, or at any time after that while the map is still
valid. Any properties that are not explicitly set when you construct the object
are given their default values as shown in the table above. For information on
calling the constructor, see “Constructing a memmapfile Object” on page 9-10.

Once a memmapfile object has been constructed, you can change the value of
any of its properties. Use the objname.property syntax in assigning the new
value. For example, to set a new Offset value for memory map object m, type

m.Offset = 2048;

Note Property names are not case sensitive. For example, MATLAB
considers m.offset to be the same as m.Offset.

Viewing Properties
To display the value of all properties of a memmapfile object, simply type the
object name. For a memmapfile object m, typing the variable name m displays
the following. Note that this example requires the file records.dat which
you will create at the beginning of the next section.

m =
Filename: 'records.dat'
Writable: true

Offset: 1024
Format: 'uint32'
Repeat: Inf

9-8

The memmapfile Class

Data: 4778x1 uint32 array

To display the value of any individual property, for example the Writable
property of object m, type

m.Writable
ans =

true

Alternatively, use the disp (memmapfile) or get (memmapfile) methods to
view properties.

9-9

9 Memory-Mapping Data Files

Constructing a memmapfile Object

In this section...

“How to Run Examples in This Section” on page 9-10

“Constructing the Object with Default Property Values” on page 9-11

“Changing Property Values” on page 9-11

“Selecting the File to Map” on page 9-13

“Setting the Start of the Mapped Region” on page 9-14

“Identifying the Contents of the Mapped Region” on page 9-14

“Mapping of the Example File” on page 9-19

“Repeating a Format Scheme” on page 9-21

“Setting the Type of Access” on page 9-22

How to Run Examples in This Section
Most of the examples in this section use a file named records.dat that
contains a 5000-by-1 matrix of double-precision floating point numbers. Use
the following code to generate this file before going on to the next sections
of this documentation.

First, save this function in your current working directory:

function gendatafile(filename, count)
dmax32 = double(intmax('uint32'));
randData = gallery('uniformdata', [count, 1], 0) * dmax32;

fid = fopen(filename, 'w');
fwrite(fid, randData, 'double');
fclose(fid);

Now execute the gendatafile function to generate the records.dat file
that is referenced in this section. You can use this function at any time
to regenerate the file:

gendatafile('records.dat', 5000);

9-10

Constructing a memmapfile Object

Constructing the Object with Default Property Values
The first step in mapping to any file is to construct an instance of the
memmapfile class using the class constructor function. You can have MATLAB
assign default values to each of the new object’s properties, or you can specify
property values yourself in the call to the memmapfile constructor.

The simplest and most general way to call the constructor is with one input
argument that specifies the name of the file you want to map. All other
properties are optional and are given their default values. Use the syntax
shown here:

objname = memmapfile(filename)

To construct a map for the file records.dat that resides in your current
working directory, type the following:

m = memmapfile('records.dat')
m =

Filename: 'd:\matlab\records.dat'
Writable: false

Offset: 0
Format: 'uint8'
Repeat: Inf

Data: 40000x1 uint8 array

MATLAB constructs an instance of the memmapfile class, assigns it to the
variable m, and maps the entire records.dat file to memory, setting all
object properties to their default values. In this example, the command maps
the entire file as a sequence of unsigned 8-bit integers and gives the caller
read-only access to its contents.

Changing Property Values
You can make the memory map more specific to your needs by including
more information when calling the constructor. In addition to the filename
argument, there are four other parameters that you can pass to the
constructor. Each of these parameters represents a property of the object, and
each requires an accompanying value to be passed, as well:

objname = memmapfile(filename, prop1, value1, prop2, value2, ...)

9-11

9 Memory-Mapping Data Files

For example, to construct a map using nondefault values for the Offset,
Format, and Writable properties, type the following, enclosing all property
names and string parameter values in quotes:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', 'double', ...
'Writable', true);

Type the object name to see the current settings for all properties:

m

m =
Filename: 'd:\matlab\records.dat'
Writable: true

Offset: 1024
Format: 'double'
Repeat: Inf

Data: 4872x1 double array

You can also change the value of any property after the object has been
constructed. Use the syntax:

objname.property = newvalue;

For example, to set the format to uint16, type the following. (Property names,
like Format, are not case sensitive.)

m.format = 'uint16'
m =

Filename: 'd:\matlab\records.dat'
Writable: true

Offset: 1024
Format: 'uint16'
Repeat: Inf

Data: 19488x1 uint16 array

Further read and write operations to the region mapped by m now treat the
data in the file as a sequence of unsigned 16-bit integers. Whenever you
change the value of a memmapfile property, MATLAB remaps the file to
memory.

9-12

Constructing a memmapfile Object

Selecting the File to Map
filename is the only required argument when you call the memmapfile
constructor. When you call the memmapfile constructor, MATLAB assigns the
file name that you specify to the Filename property of the new object instance.

Specify the file name as a quoted string, (e.g., 'records.dat'). It must
be first in the argument list and not specified as a parameter-value pair.
filename must include a file name extension if the name of the file being
mapped has an extension. The filename argument cannot include any
wildcard characters (e.g., * or ?), and is not case sensitive.

Note Unlike the other memmapfile constructor arguments, you must specify
filename as a single string, and not as a parameter-value pair.

If the file to be mapped resides somewhere on the MATLAB path, you can use
a partial pathname. If the path to the file is not fully specified, MATLAB
searches for the file in your current working directory first, and then on the
MATLAB path.

Once memmapfile locates the file, MATLAB stores the absolute path name for
the file internally, and then uses this stored path to locate the file from that
point on. This enables you to work in other directories outside your current
work directory and retain access to the mapped file.

You can change the value of the Filename property at any time after
constructing the memmapfile object. You might want to do this if:

• You want to use the same memmapfile object on more than one file.

• You save your memmapfile object to a MAT-file, and then later load it back
into MATLAB in an environment where the mapped file has been moved to
a different location. This requires that you modify the path segment of the
Filename string to represent the new location.

For example, save memmapfile object m to file mymap.mat:

disp(m.Filename)
d:\matlab\records.dat

9-13

9 Memory-Mapping Data Files

save mymat m

Now move the file to another location, load the object back into MATLAB, and
update the path in the Filename property:

load mymat m
m.Filename = 'f:\testfiles\oct1\records.dat'

Note You can only map an existing file. You cannot create a new file and map
that file to memory in one operation. Use the MATLAB file I/O functions to
create the file before attempting to map it to memory.

Setting the Start of the Mapped Region
By default, MATLAB begins a memory map at the start of the file. To begin
the mapped region at some point beyond the start of the file, specify an Offset
parameter in the call to the memmapfile constructor:

objname = memmapfile(filename, 'Offset', bytecount)

The bytecount value is the number of bytes from the beginning of the file to
the point in the file where you want the memory map to start (a zero-based
offset). To map the file records.dat from a point 1024 bytes from the start
and extending to the end of the file, type

m = memmapfile('records.dat', 'Offset', 1024);

You can change the starting position of an existing memory map by setting
the Offset property for the associated object to a new value. The following
command sets the offset of memmapfile object m to be 2,048 bytes from the
start of the mapped file:

m.Offset = 2048;

Identifying the Contents of the Mapped Region
By default, MATLAB considers all the data in a mapped file to be a sequence
of unsigned 8-bit integers. To have the data interpreted otherwise as it is
read or written to in the mapped file, specify a Format parameter and value in
your call to the constructor:

9-14

Constructing a memmapfile Object

objname = memmapfile(filename, 'Format', formatspec)

The formatspec argument can either be a character string that identifies a
single class used throughout the mapped region, or a cell array that specifies
more than one class.

For example, say that you map a file that is 12 kilobytes in length. Data read
from this file could be treated as a sequence of 6,000 16-bit (2-byte) integers,
or as 1,500 8-byte double-precision floating-point numbers, to name just a
couple of possibilities. Or you could read this data in as a combination of
different types: for example, as 4,000 8-bit (1-byte) integers followed by 1,000
64-bit (8-byte) integers. You determine how MATLAB will interpret the
mapped data by setting the Format property of the memmapfile object when
you call its constructor.

MATLAB arrays are stored on disk in column-major order. (The sequence
of array elements is column 1, row 1; column 1, row 2; column 1, last row;
column 2, row 1, and so on.) You might need to transpose or rearrange the
order of array elements when reading or writing via a memory map.

For a list of data types supported for the Format property, see “Supported
Data Types for the Format Property” on page 9-20.

For more information on format options see these sections:

• “Mapping a Single Data Type” on page 9-15

• “Formatting the Mapped Data to an Array” on page 9-16

• “Mapping Multiple Data Types and Arrays” on page 9-17

Mapping a Single Data Type
If the file region being mapped contains data of only one type, specify the
Format value as a character string identifying that type:

objname = memmapfile(filename, 'Format', datatype)

The following command constructs a memmapfile object for the entire file
records.dat, and sets the Format property for that object to uint64. Any
read or write operations made via the memory map will read and write the
file contents as a sequence of unsigned 64-bit integers:

9-15

9 Memory-Mapping Data Files

m = memmapfile('records.dat', 'Format', 'uint64')
Filename: 'd:\matlab\records.dat'
Writable: false

Offset: 0
Format: 'uint64'
Repeat: Inf

Data: 5000x1 uint64 array

You can change the value of the Format property at any time after the
memmapfile object is constructed. Use the object.property syntax shown
here in assigning the new value:

m.Format = 'int32';

Further read and write operations to the region mapped by m now treat the
data in the file as a sequence of signed 32-bit integers.

Property names, like Format, are not case sensitive.

Formatting the Mapped Data to an Array
You can also specify an array shape to be applied to the data read or written to
the mapped file, and a field name to be used in referencing this array. Use a
cell array to hold these values either when calling the memmapfile constructor
or when modifying m.Format after the object has been constructed. The cell
array contains three elements: the class to be applied to the mapped region,
the dimensions of the array shape that is applied to the region, and a field
name to use in referencing the data:

objname = memmapfile(filename, ...
'Format', {datatype, dimensions, varname})

The following command constructs a memmapfile object for a region of
records.dat such that MATLAB handles the contents of the region as a
4-by-10-by-18 array of unsigned 32-bit integers, which you can reference in
the structure of the returned object using the field name x:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', {'uint32' [4 10 18] 'x'})

m =

9-16

Constructing a memmapfile Object

Filename: 'd:\matlab\records.dat'
Writable: false

Offset: 1024
Format: {'uint32' [4 10 18] 'x'}
Repeat: Inf

Data: 13x1 struct array with fields:
x

A = m.Data(1).x;

whos A
Name Size Bytes Class Attributes

A 4x10x18 2880 uint32

You can change the class, array shape, or field name that MATLAB applies
to the mapped region at any time by setting a new value for the Format
property of the object:

m.Format = {'uint64' [30 4 10] 'x'};
A = m.Data(1).x;

whos A
Name Size Bytes Class Attributes

A 30x4x10 9600 uint64

Mapping Multiple Data Types and Arrays
If the region being mapped is composed of segments of varying classes or
array shapes, you can specify an individual format for each segment using an
N-by-3 cell array, where N is the number of segments. The cells of each cell
array row identify the class for that segment, the array dimensions to map
the data to, and a field name by which to reference that segment:

objname = memmapfile(filename, ...
'Format', { ...

datatype1, dimensions1, fieldname1; ...
datatype2, dimensions2, fieldname2; ...

: : : ...
datatypeN, dimensionsN, fieldnameN})

9-17

9 Memory-Mapping Data Files

The following command maps data in a 20.75-kilobyte file to three different
classes: int16, uint32, and single. The int16 data is mapped as a 2-by-2
matrix that can be accessed using the field name model. The uint32 data is a
scalar value accessed as field serialno. The single data is a 1-by-3 matrix
named expenses.

Each of these fields belongs to the 800-by-1 structure array m.Data:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

9-18

Constructing a memmapfile Object

Mapping of the Example File

The figure below shows the ordering of the array elements more closely.
In particular, it illustrates that MATLAB arrays are stored on the disk in
column-major order. The sequence of array elements in the mapped file is row
1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

9-19

9 Memory-Mapping Data Files

If the data in your file is not stored in this order, you might need to transpose
or rearrange the order of array elements when reading or writing via a
memory map.

Supported Data Types for the Format Property
You can use any of the following classes when you specify a Format value. The
default type is uint8.

Format String Data Type Description

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'int64' Signed 64-bit integers

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

'uint64' Unsigned 64-bit integers

'single' 32-bit floating-point

'double' 64-bit floating-point

9-20

Constructing a memmapfile Object

Repeating a Format Scheme
After you set a Format value for the memmapfile object, you can have
MATLAB apply that format to the file data multiple times by specifying a
Repeat value when you call the memmapfile constructor:

objname = memmapfile(filename, ...
'Format', formatspec, ...
'Repeat', count)

The Repeat value applies to the whole format specifier, whether that specifier
describes just a single class that repeats, or a more complex format that
includes various classes and array shapes. The default Repeat value is
infinity (inf), which means that the full extent of the Format specifier repeats
as many times as possible within the mapped region.

The next example maps a file region identical to that of the previous example,
except the pattern of int16, uint32, and single classes is repeated only
three times within the mapped region of the file:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 3);

You can change the value of the Repeat property at any time. To change
the repeat value to 5, type

m.Repeat = 5;

Property names, like Repeat, are not case sensitive.

Keeping the Repeated Format Within the Mapped Region
MATLAB maps only the full pattern specified by the Format property. If you
repeat a format such that it would cause the map to extend beyond the end
of the file, then either of two things can happen:

9-21

9 Memory-Mapping Data Files

• If you specify a repeat value of Inf, MATLAB applies to the map only those
repeated segments that fit within the file in their entirety.

• If you specify a repeat value other than Inf, and that value would cause
the map to extend beyond the end of the file, MATLAB generates an error.

Considering the last example, if the part of the file from m.Offset to the end
were 70 bytes (instead of the 72 bytes required to repeat m.Format three
times) and you used a Repeat value of Inf, then only two full repetitions of
the specified format would have been mapped. The end result is as if you had
constructed the map with this command:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 2);

If Repeat were set to 3 and you had only 70 bytes to the end of the file, you
would get an error.

Note memmapfile does not expand or append to a mapped file. Use standard
file I/O functions like fopen and fwrite to do this.

Setting the Type of Access
You can map a file region to allow either read-only or read and write access
to its contents. Pass a Writable parameter and value in the memmapfile
constructor, or set m.Writable on an existing object to set the type of access
allowed:

objname = memmapfile(filename, 'Writable', trueorfalse)

The value passed can be either true (equal to logical(1)) or false (equal
to logical(0)). By default, it is false, meaning that the mapped region
is read only.

To map a read and write region of the file records.dat in memory, type

9-22

Constructing a memmapfile Object

m = memmapfile('records.dat', 'Writable', true);

Note To successfully modify the file you are mapping to, you must have write
permission for that file. If you do not have write permission, you can still set
the Writable property to true, but attempting to write to the file generates
an error.

You can change the value of the Writable property at any time. To make the
memory map to records.dat read only, type:

m.Writable = false;

Property names, like Writable, are not case sensitive.

9-23

9 Memory-Mapping Data Files

Reading a Mapped File

In this section...

“Introduction” on page 9-24

“Improving Performance” on page 9-24

“Example 1 — Reading a Single Data Type” on page 9-25

“Example 2 — Formatting File Data as a Matrix” on page 9-26

“Example 3 — Reading Multiple Data Types” on page 9-27

“Example 4 — Modifying Map Parameters” on page 9-28

Introduction
The most commonly used property of the memmapfile class is the Data
property. It is through this property of the memory-map object that MATLAB
provides all read and write access to the contents of the mapped file.

The actual mapping of a file to the MATLAB address space does not take
place when you construct a memmapfile object. A memory map, based on the
information currently stored in the mapped object, is generated the first time
you reference or modify the Data property for that object.

After you map a file to memory, you can read the contents of that file using
the same MATLAB statements used to read variables from the MATLAB
workspace. By accessing the Data property of the memory map object, the
contents of the mapped file appear as if they were an array in the currently
active workspace. You simply index into this array to read the desired data
from the file.

Improving Performance
MATLAB accesses data in structures more efficiently than it does data
contained in objects. The main reason is that structures do not require the
extra overhead of a subsref routine. Instead of reading directly from the
memmapfile object, as shown here:

for k = 1 : N
y(k) = m.Data(k);

9-24

Reading a Mapped File

end

you will get better performance when you assign the Data field to a variable,
and then read the mapped file through this variable, as shown in this second
example:

dataRef = m.Data;
for k = 1 : N

y(k) = dataRef(k);
end

Example 1 — Reading a Single Data Type
This example maps a file of 100 double-precision floating-point numbers to
memory. The map begins 1024 bytes from the start of the file, and ends 800
bytes (8 bytes per double times a Repeat value of 100) from that point.

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 9-10:

gendatafile('records.dat', 5000);

Now, construct the memmapfile object m, and show the format of its Data
property:

m = memmapfile('records.dat', 'Format', 'double', ...
'Offset', 1024, 'Repeat', 100);

d = m.Data;

whos d
Name Size Bytes Class Attributes

d 100x1 800 double

Read a selected set of numbers from the file by indexing into the
single-precision array m.Data:

d(15:20)
ans =

1.0e+009 *

9-25

9 Memory-Mapping Data Files

3.6045
2.7006
0.5745
0.8896
2.6079
2.7053

Example 2 — Formatting File Data as a Matrix
This example is similar to the last, except that the constructor of the
memmapfile object now specifies an array shape of 4-by-6 to be applied to the
data as it is read from the mapped file. MATLAB maps the file contents into a
structure array rather than a numeric array, as in the previous example:

m = memmapfile('records.dat', ...
'Format', {'double', [4 6], 'x'}, ...
'Offset', 1024, 'Repeat', 100);

d = m.Data;

whos d
Name Size Bytes Class Attributes

d 100x1 25264 struct

When you read an element of the structure array, MATLAB presents the
data in the form of a 4-by-6 array:

d(5).x
ans =

1.0e+009 *
3.1564 0.6684 2.1056 1.9357 1.2773 4.2219
2.9520 0.8208 3.5044 1.7705 0.2112 2.3737
1.4865 1.8144 1.9790 3.8724 2.9772 1.7183
0.7131 3.6764 1.9643 0.0240 2.7922 0.8538

To index into the structure array field, use:

d(5).x(3,2:6)
ans =

1.0e+009 *
1.8144 1.9790 3.8724 2.9772 1.7183

9-26

Reading a Mapped File

Example 3 — Reading Multiple Data Types
This example maps a file containing more than one class. The different
classes contained in the file are mapped as fields of the returned structure
array m.Data.

The Format parameter passed in the constructor specifies that the first 80
bytes of the file are to be treated as a 5-by-8 matrix of uint16, and the 160
bytes after that as a 4-by-5 matrix of double. This pattern repeats until the
end of the file is reached. The example shows different ways of reading the
Data property of the object.

Start by calling the memmapfile constructor to create a memory map object, m:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you examine the Data property, MATLAB shows a 166-element structure
array with two fields, one for each format specifier in the constructor:

d = m.Data
ans =
166x1 struct array with fields:

x
y

Examine one structure in the array to show the format of each field:

d(3)
ans =

x: [5x8 uint16]
y: [4x5 double]

Now read the x and y fields of that structure from the file. MATLAB formats
the first block of data as a 5-by-8 matrix of uint16, as specified in the Format
property, and the second block as a 4-by-5 matrix of double:

d(3).x
ans =

34432 47500 19145 16868 38165 47956 35550 16853

9-27

9 Memory-Mapping Data Files

60654 51944 16874 47166 35397 58072 16850 56576
51075 16876 12471 34369 8341 16853 44509 57652
16863 16453 6666 11480 16869 58695 36217 5932
57883 15551 41755 16874 37774 31693 54813 16865

d(3).y
ans =

1.0e+009 *
3.1229 1.5909 2.9831 2.2445 1.1659
1.3284 3.0182 2.6685 3.7802 1.0837
3.6013 2.3475 3.4137 0.7428 3.7613
2.4399 1.9107 4.1096 4.2080 3.1667

Example 4 — Modifying Map Parameters
This example plots the Fourier transform output of data read from a file via a
memory map. It then modifies several parameters of the existing map, reads
from a different part of the data file, and plots a histogram from that data.

Create a memory-mapped object, mapping 1,000 elements of type double
starting at the 1025th byte:

m = memmapfile('mybinary.bin', 'Offset', 1024, ...
'Format', 'double', 'Repeat', 1000);

Get data associated with the map and plot the FFT of the first 1000 values of
the map. This is when the map is actually created, because no data has been
referenced until this point:

plot(abs(fft(m.Data(1:1000))));

Get information about the memory map:

mapStruct = get(m)

mapStruct =
Filename: 'd:\matlab\mybinary.bin'
Writable: 0

Offset: 1024
Format: 'double'
Repeat: 1000

9-28

Reading a Mapped File

Data: [1000x1 double]

Change the map, but continue using the same file:

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

Read from a different area of the file, and plot a histogram of the data. This
maps a new region and unmaps the previous region:

hist(m.Data)

9-29

9 Memory-Mapping Data Files

Writing to a Mapped File

In this section...

“Example — Writing to a Mapped File” on page 9-30

“Dimensions of the Data Field” on page 9-31

“Writing Matrices to a Mapped File” on page 9-33

“Selecting Appropriate Data Types” on page 9-35

“Working with Copies of the Mapped Data” on page 9-36

Example — Writing to a Mapped File
Writing to a mapped file is done with standard MATLAB subscripted
assignment commands. To write to a particular location in the file mapped
to memmapfile object m, assign the value to the m.Data structure array index
and field that map to that location.

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 9-10:

gendatafile('records.dat', 5000);

Now call the memmapfile constructor to create the object:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you are going to modify the mapped file, be sure that you have write
permission, and that you set the Writable property of the memmapfile object
to true (logical 1):

m.Writable = true;

9-30

Writing to a Mapped File

Note You do not have to set Writable as a separate command, as done
here. You can include a Writable parameter-value argument in the call to
the memmapfile constructor.

View the 5-by-8 matrix x at m.Data(2):

m.Data(2).x

ans =
35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

Update all values in that matrix using a standard MATLAB assignment
statement:

m.Data(2).x = m.Data(2).x * 1.5;

Verify the results:

m.Data(2).x

ans =
52995 7353 47792 25316 35687 65535 65535 25262
65535 65535 25290 65285 13436 7773 25296 65535
27623 25307 65535 65535 65535 25313 39561 42855
25175 6534 65535 65535 25287 57641 24101 49977
65535 65535 65535 25292 28323 59736 65535 25304

Dimensions of the Data Field
Although you can expand the dimensions of a typical MATLAB array by
assigning outside its current dimensions, this does not apply to the Data
property of a memmapfile object. The dimensions of a memmapfile object’s
Data field are set at the time you construct the object and cannot be changed.

For example, you can add a new column to the field of a MATLAB structure:

9-31

9 Memory-Mapping Data Files

A.s = ones(4,5);

A.s(:,6) = [1 2 3 4]; % Add new column to A.s
size(A.s)
ans =

4 6

However, you cannot add a new column to a similar field of a structure
that represents data mapped from a file. The following assignment to
m.Data(60).y does not expand the size of y, but instead generates an error:

m.Data(60)
ans =

x: [5x8 uint16]
y: [4x5 double]

m.Data(60).y(:,6) = [1 2 3 4]; % Generates an error.

Thus, if you map an entire file and then append to that file after constructing
the map, the appended data is not included in the mapped region. If you need
to modify the dimensions of data that you have mapped to a memmapfile
object, you must either modify the Format or Repeat properties for the object,
or reconstruct the object.

Examples of Invalid Syntax
Several examples of statements that attempt to modify the dimensions of a
mapped Data field are shown here. These statements result in an error.

The first example attempts to diminish the size of the array by removing a
row from the mapped array m.Data.

m.Data(5) = [];

The second example attempts to expand the size of a 50-row mapped array x
by adding another row to it:

m.Data(2).x(1:51,31) = 1:51;

Similarly, if m.Data has only 100 elements, the following operation is invalid:

m.Data(120) = x;

9-32

Writing to a Mapped File

Writing Matrices to a Mapped File
The syntax to use when writing to mapped memory can depend on what
format was used when you mapped memory to the file.

When Memory Is Mapped in Nonstructure Format
When you map a file as a sequence of a single class (e.g., a sequence of
uint16), you can use the following syntax to write matrix X to the file:

m.Data = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as a sequence of elements of the same class, making
m.Data an array of a nonstructure type.

• The class of X is the same as the class of m.Data.

• The number of elements in X equals the number of elements in m.Data.

This example maps a file as a sequence of 16-bit unsigned integers, and then
uses the syntax shown above to write a matrix to the file. Map only a small
part of the file, using a uint16 format for this segment:

m = memmapfile('records.dat', 'Writable', true', ...
'Offset', 2000, 'Format', 'uint16', 'Repeat', 15);

Create a matrix X of the same size and write it to the mapped part of the file:

X = uint16(5:5:75); % Sequence of 5 to 75, counting by fives.
m.data = X;

Verify that new values were written to the file:

m.offset = 1980; m.repeat = 35;
reshape(m.data,5,7)'
ans =

29158 16841 32915 37696 421 % <== At offset 1980
16868 51434 17455 30645 16871

5 10 15 20 25 % <== At offset 2000
30 35 40 45 50
55 60 65 70 75

9-33

9 Memory-Mapping Data Files

16872 50155 51100 26469 16873
56776 6257 28746 16877 34374

When Memory Is Mapped in Scalar Structure Format
When you map a file as a sequence of a single class (e.g., a sequence of
uint16), you can use the following syntax to write matrix X to the file:

m.Data.f = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as containing multiple classes that do not repeat,
making m.Data a scalar structure.

• The class of X is the same as the class of m.Data.f.

• The number of elements in X equals that of m.Data.f.

This example maps a file as a 300-by-8 matrix of type uint16 followed by
a 200-by-5 matrix of type double, and then uses the syntax shown above
to write a matrix to the file.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [300 8] 'x'; ...
'double' [200 5] 'y' }, ...

'Repeat', 1, 'Writable', true);

m.Data.x = ones(300, 8, 'uint16');

When Memory Is Mapped in Nonscalar Structure Format
When you map a file as a repeating sequence of multiple classes, you can
use the following syntax to write matrix X to the file, providing that k is a
scalar index:

m.Data(k).field = X;

To do this, the following conditions must be true:

9-34

Writing to a Mapped File

• The file is mapped as containing multiple classes that can repeat, making
m.Data a nonscalar structure.

• k is a scalar index.

• The class of X is the same as the class of m.Data(k).field.

• The number of elements in X equals that of m.Data(k).field.

This example maps a file as a matrix of type uint16 followed by a matrix of
type double that repeat 20 times, and then uses the syntax shown above
to write a matrix to the file.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [25 8] 'x'; ...
'double' [15 5] 'y' }, ...

'Repeat', 20, 'Writable', true);

m.Data(12).x = ones(25,8,'uint16');

You can write to specific elements of field x as shown here:

m.Data(12).x(3:5,1:end) = uint16(500);
m.Data(12).x(3:5,1:end)

ans =
500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500

Selecting Appropriate Data Types
All of the usual MATLAB indexing and class rules apply when assigning
values to data via a memory map. The class that you assign to must be big
enough to hold the value being assigned. For example,

m = memmapfile('records.dat', 'Format', 'uint8', ...
'Writable', true);

d = m.Data;
d(5) = 300;

9-35

9 Memory-Mapping Data Files

saturates the d variable because d is defined as an 8-bit integer:

d(5)
ans =

255

Working with Copies of the Mapped Data
In the following code, the data in variable d is a copy of the file data mapped
by m.Data(2). Because it is a copy, modifying array data in d does not modify
the data contained in the file:

First, destroy the memmapfile object and restore the test file records.dat,
since you modified it by running the previous examples:

clear m
gendatafile('records.dat',50000);

Map the file as a series of uint16 and double matrices and make a copy of
m.Data(2) in d:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

d = m.Data;

Write all zeros to the copy:

d(2).x(1:5,1:8) = 0;

d(2).x
ans =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Verify that the data in the mapped file is not changed even though the copy of
m.Data(2).x is written with zeros:

9-36

Writing to a Mapped File

m.Data(2).x
ans =

35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

9-37

9 Memory-Mapping Data Files

Deleting a Memory Map

In this section...

“Ways to Delete a Memory Map” on page 9-38

“The Effect of Shared Data Copies On Performance” on page 9-38

Ways to Delete a Memory Map
It is not necessary to explicitly call a destructor method to clear a memmapfile
object from memory when you no longer need it. MATLAB calls the destructor
for you whenever you do any of the following:

• Reassign another value to the memmapfile object’s variable

• Clear the object’s variable from memory

• Exit the function scope in which the object was created

The Effect of Shared Data Copies On Performance
When you assign the Data field of the memmapfile object to a variable,
MATLAB makes a shared data copy of the mapped data. This is very efficient
as no memory actually gets copied. In the following statement, memdat is a
shared data copy of the data mapped from the file:

memdat = m.Data;

When you finish using the mapped data, make sure to clear any variables
that shared data with the mapped file before clearing the object itself. If you
clear the object first, then the sharing of data between the file and dependent
variables is broken, and the data assigned to such variables must be copied
into memory before the object is destroyed. If access to the mapped file was
over a network, then copying this data to local memory can take considerable
time. So, if the statement shown above assigns data to the variable memdat,
you should be sure to clear memdat before clearing m when you are finished
with the object.

9-38

Share Memory Between Applications

Share Memory Between Applications

In this section...

“Introduction” on page 9-39

“The send Function” on page 9-39

“The answer Function” on page 9-41

“Running the Example” on page 9-42

Introduction
In this example, two separate MATLAB processes communicate with each
other by writing and reading from a shared file. They share the file by
mapping part of their memory space to a common location in the file. A write
operation to the memory map belonging to the first process can be read from
the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its
memory map. It also writes the length of the message to byte 1 in the file,
which serves as a means of notifying the other process that a message is
available. The second process (running answer.m) monitors byte 1 and, upon
seeing it set, displays the received message, puts it into uppercase, and echoes
the message back to the sender.

The send Function
This function prompts you to enter a string and then, using memory-mapping,
passes the string to another instance of MATLAB that is running the answer
function.

Copy the send and answer functions to files send.m and answer.m in your
current working directory. Begin the example by calling send with no inputs.
Next, start a second MATLAB session on the same machine, and call the
answer function in this session. To exit, press Enter.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

9-39

9 Memory-Mapping Data Files

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:send:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Set first byte to zero, indicating a message is not
% yet ready.
m.Data(1) = 0;

str = input('Enter send string (or RETURN to end): ', 's');

len = length(str);
if (len == 0)

disp('Terminating SEND function.')
break;

end

str = str(1:min(len, 255)); % Message limited to 255 chars.

% Update the file via the memory map.
m.Data(2:len+1) = str;
m.Data(1)=len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1) ~= 0)

pause(.25);
end

9-40

Share Memory Between Applications

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:len+1))')

end

The answer Function
The answer function starts a server that, using memory-mapping, watches
for a message from send. When the message is received, answer replaces the
message with an uppercase version of it, and sends this new message back
to send.

To use answer, call it with no inputs:

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:answer:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Wait till first byte is not zero.
while m.Data(1) == 0

pause(.25);

9-41

9 Memory-Mapping Data Files

end

% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+m.Data(1)))';

% Display the message.
disp('Received message from SEND:')
disp(msg)

% Transform the message to all uppercase.
m.Data(2:1+m.Data(1)) = upper(msg);

% Signal to SEND that the response is ready.
m.Data(1) = 0;

end

Running the Example
To see what the example looks like when it is run, first, start two separate
MATLAB sessions on the same computer system. Call the send function
in one and the answer function in the other to create a map in each of the
processes’ memory to the common file:

% Run SEND in the first MATLAB session.
send
Enter send string (or RETURN to end):

% Run ANSWER in the second MATLAB session.
answer
ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB
writes the message to the shared file. The second MATLAB session, running
the answer function, loops on byte 1 of the shared file and, when the byte is
written by send, answer reads the message from the file via its memory map.
The answer function then puts the message into uppercase and writes it back
to the file, and send (waiting for a reply) reads the message and displays it:

% SEND writes a message and reads the uppercase reply.

9-42

Share Memory Between Applications

Hello. Is there anybody out there?
response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter send string (or RETURN to end):

% ANSWER reads the message from SEND.
Received message from SEND:
Hello. Is there anybody out there?

send writes a second message to the file. answer reads it, put it into
uppercase, and then writes the message to the file:

% SEND writes a second message to the shared file.
I received your reply.
response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter send string (or RETURN to end): <Enter>
Terminating SEND function.

% ANSWER reads the second message.
Received message from SEND:
I received your reply.

9-43

9 Memory-Mapping Data Files

9-44

10

Internet File Access

MATLAB software provides functions for exchanging files over the Internet.
You can exchange files using common protocols, such as File Transfer Protocol
(FTP), Simple Mail Transport Protocol (SMTP), and HyperText Transfer
Protocol (HTTP). In addition, you can create zip archives to minimize the
transmitted file size, and also save and work with Web pages.

• “Downloading Web Content and Files” on page 10-2

• “Creating and Decompressing Zip Archives” on page 10-4

• “Sending Email” on page 10-5

• “Performing FTP File Operations” on page 10-8

• “Display Hyperlinks in the Command Window” on page 10-10

10 Internet File Access

Downloading Web Content and Files
MATLAB provides two functions for downloading Web pages and files using
HTTP: urlread and urlwrite. With the urlread function, you can read
and save the contents of a Web page to a string variable in the MATLAB
workspace. With the urlwrite function, you can save a Web page’s content
to a file.

Because it creates a string variable in the workspace, the urlread function is
useful for working with the contents of Web pages in MATLAB. The urlwrite
function is useful for saving Web pages to a local folder.

Note When using urlread, remember that only the HTML in that specific
Web page is retrieved. The hyperlink targets, images, and so on are not
retrieved.

If you need to pass parameters to a Web page, the urlread and urlwrite
functions let you use HTTP post and get methods. For more information, see
the urlread and urlwrite reference pages.

Example — Using the urlread Function
The following procedure demonstrates how to retrieve the contents of the
Web page listing the files submitted to the MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/. It assigns the
results to a string variable, fullList:

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
fullList = urlread(filex);

To pass arguments, you can include them manually using the URL, or pass
parameters using standard HTTP methods, including post and get.

For example, to pass arguments as part of the URL, and retrieve only the files
uploaded to the Central File Exchange within the past 7 days that contain the
word Simulink:

filex = sprintf('%s%s',...

10-2

http://www.mathworks.com/matlabcentral/fileexchange/

Downloading Web Content and Files

'http://www.mathworks.com/matlabcentral/fileexchange/',...
'?duration=7&term=simulink');

recent = urlread(filex);

Alternatively, use the HTTP get method to query the list of files:

filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

recent = urlread(filex,'get',params);

For more information, see the urlread reference page.

Example — Using the urlwrite Function
The following example builds on the procedure in the previous section, but
saves the content to a file:

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

% Save the Web content to a file.
urlwrite(filex,'contains_simulink.html','get',params);

MATLAB saves the Web page as contains_simulink.html.

10-3

10 Internet File Access

Creating and Decompressing Zip Archives
Using the zip and unzip functions, you can compress and decompress files
and folders. The zip function compresses files or folders into a zip archive.
The unzip function decompresses zip archives.

Example — Using the zip Function
Again building on the example from previous sections, the following code
creates a zip archive of the retrieved Web page:

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

% Save the Web content to a file.
urlwrite(filex,'contains_simulink.html','get',params);

% Create a zip archive of the retrieved Web page.
zip('simulink_matches.zip','contains_simulink.html');

10-4

Sending Email

Sending Email
To send an email from MATLAB, use the sendmail function. You can also
attach files to an email, which lets you mail files directly from MATLAB. To
use sendmail, you must first set up your email address and your SMTP server
information with the setpref function.

The setpref function defines two mail-related preferences:

• Email address: This preference sets your email address that will appear on
the message. Here is an example of the syntax:

setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server: This preference sets your outgoing SMTP server address,
which can be almost any email server that supports the Post Office Protocol
(POP) or the Internet Message Access Protocol (IMAP). Here is an example
of the syntax:

setpref('Internet', 'SMTP_Server', 'mail.server.network');

You should be able to find your outgoing SMTP server address in your email
account settings in your email client application. You can also contact your
system administrator for the information.

Note The sendmail function does not support email servers that require
authentication.

Once you have properly configured MATLAB, you can use the sendmail
function. The sendmail function requires at least two arguments: the
recipient’s email address and the email subject:

sendmail('recipient@someserver.com', 'Hello From MATLAB!');

You can supply multiple email addresses using a cell array of strings, such as:

sendmail({'recipient@someserver.com', ...
'recipient2@someserver.com'}, 'Hello From MATLAB!');

10-5

10 Internet File Access

You can also specify a message body with the sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello From MATLAB!', ...
'Thanks for using sendmail.');

In addition, you can also attach files to an email using the sendmail function,
such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message
can be empty. You can also attach multiple files to an email with the
sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', ...
{'C:\yourFileSystem\message.txt',...
'C:\yourFileSystem\message2.txt'});

Example — Using the sendmail Function
The following example sends email with the retrieved Web page archive
attached:

% NOTE: CHANGE THESE 2 LINES OF CODE TO REFLECT YOUR SETTINGS.
mySMTP = 'mail.server.network';
myEmail = 'youraddress@yourserver.com';

% Set your email and SMTP server address in MATLAB.
setpref('Internet','SMTP_Server',mySMTP);
setpref('Internet','E_mail',myEmail);

% Locate the list of files at the MATLAB Central File Exchange
% uploaded within the past 7 days, that contain "Simulink."
filex = 'http://www.mathworks.com/matlabcentral/fileexchange/';
params = {'duration','7','term','simulink'};

% Save the Web content to a file.
urlwrite(filex,'contains_simulink.html','get',params);

10-6

Sending Email

% Create a zip archive of the retrieved Web page.
zip('simulink_matches.zip','contains_simulink.html');

% Send an email (to yourself) with the zip archive attached.
recipient = myEmail;
subj = 'List of New Simulink Files';
msg = ...

'Attached: new Similink files uploaded to MATLAB Central.';
attFile = 'simulink_matches.zip';
sendmail(recipient,subj,msg,attFile);

10-7

10 Internet File Access

Performing FTP File Operations
From MATLAB, you can connect to an FTP server to perform remote file
operations. The following procedure uses a public MathWorks FTP server
(ftp.mathworks.com). To perform any file operation on an FTP server, follow
these steps:

1 Connect to the server using the ftp function.

2 Perform file operations using appropriate MATLAB FTP functions. For all
operations, specify the server object. For a complete list of functions, see
the FTP reference page.

3 When you finish working on the server, close the connection object using the
close function.

Example — Retrieving a File from an FTP Server
List the contents of the MathWorks FTP server and retrieve a file named
README To view the file, use the type function.

tmw = ftp('ftp.mathworks.com');
dir(tmw)

mget(tmw, 'README');
type README

README contains the following text:

Welcome to the MathWorks FTP site!
The MathWorks FTP site has a new structure:

/incoming - where you upload files to
/outgoing - where you pick up files from

NOTE: Files in the above directories will be removed after 30 days.

You may also want to visit the MathWorks Web site at

http://www.mathworks.com

10-8

Performing FTP File Operations

Send questions/comments/suggestions to ftpadmin@mathworks.com

View the contents of the pub folder:

cd(tmw, 'pub')
dir(tmw)

% Close the connection
close(tmw)

10-9

10 Internet File Access

Display Hyperlinks in the Command Window

In this section...

“Creating Hyperlinks to Web Pages” on page 10-10

“Transferring Files Using FTP” on page 10-10

Creating Hyperlinks to Web Pages
When creating a hyperlink to a Web page, append a full hypertext string
on a single line as input to the disp or fprintf command. For example,
the following command:

disp('The MathWorks Web Site')

displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays
the requested page.

Transferring Files Using FTP
To create a link to an FTP site, enter the site address as input to the disp
command as follows:

disp('The MathWorks FTP Site')

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested
FTP site.

10-10

http://www.mathworks.com
ftp://ftp.mathworks.com

Index

IndexA
access modes

HDF4 files 6-58
ASCII data

exporting 2-19
exporting delimited data 2-20
exporting with diary function 2-24
formats 2-2
importing 2-2
importing mixed numeric and nonnumeric

data 2-14
importing nonrectangular data 2-17
importing numeric data 2-10
importing numeric data with headers 2-12
reading formatted text 4-3
saving 2-20
writing 2-20

ASCII files
reading 2-2

attributes
retrieving from HDF4 files 6-59
writing to an HDF4 file 6-88

B
binary data

controlling class of values read 4-13
using the Import Wizard 1-9
writing to 4-26

C
cdfepoch object

representing CDF time values 6-6
characters

used as delimiters 2-2
classes

precision 4-13
reading files 4-13
specifying for input 4-13

clipboard
importing binary data 1-7

Common Data Format (CDF)
combining records to improve read

performance 6-5
converting CDF epoch values to MATLAB

datenum values 6-5
reading CDF files using the high-level

functions 6-4
reading metadata from CDF files using

high-level functions 6-3
representing time values 6-6
speeding up read operations 6-4
writing data to CDF files 6-10

D
delimiters

defined 2-2
diary 2-24
directories

temporary 1-25
downloading files 10-2

E
Earth Observing System (EOS) 6-52 6-82
end of file 4-7
EOS (Earth Observing System)

sources of information 6-52 6-82
exporting

ASCII data 2-19
in HDF4 format 6-82
in HDF5 format 6-40

F
feof 4-14
file exchange

over Internet 10-1
file I/O

Index-1

Index

audio/video files
exporting 7-17

graphics files
exporting 5-6
importing 5-2

internet 10-1
downloading from web 10-2
FTP operations 10-8
sending email 10-5
ZIP files 10-4

low-level functions
ASCII files:exporting 4-19
ASCII files:importing 4-3
binary files:exporting 4-26
binary files:importing 4-11
text files:exporting 4-19

MATLAB HDF4 utility API 6-90
memory mapping. See memory mapping
overview

toolboxes for importing data 1-8
scientific formats

FITS files 6-30
HDF4 and HDF-DOS files 6-52
HDF4 files 6-52 6-56 6-82
HDF5 files 6-32

supported file types 1-7
text files

exporting 2-19
importing 2-2

using Import Wizard 1-9
file import and export

supported file types 1-7
file operations

FTP 10-8
file types

supported by MATLAB 1-7
files

ASCII
reading 2-2
reading formatted text 4-3

writing 2-20
beginning of 4-15
binary

classes 4-13
controlling class values read 4-13
reading 4-11
writing to 4-26

current position 4-15
end of 4-7
permissions 4-22 4-27
position 4-14
specifying delimiter used in ASCII files 2-2
temporary 1-25
text

reading 2-2
FITS. See Flexible Image Transport System
Flexible Image Transport System (FITS)

reading 6-30
reading data 6-30
reading metadata 6-30

fread 4-13
frewind 4-14
fseek 4-14
ftell 4-14
FTP

transferring files via link 10-10
FTP file operations 10-8
fwrite 4-26

G
global attributes

HDF4 files 6-59

H
HDF Import Tool

using 6-63
using subsetting options 6-68

HDF-EOS

Index-2

Index

Earth Observing System 6-52 6-82
HDF4 6-52

closing a data set 6-90
closing a file 6-90
closing all open identifiers 6-91
closing data sets 6-63
creating a file 6-84
creating data sets 6-84
exporting in HDF4 format 6-82
importing data 6-53
importing subsets of data 6-67
listing all open identifiers 6-90
low-level functions

overview 6-56
mapping HDF4 syntax to MATLAB

syntax 6-57 6-83
MATLAB utility API 6-90
opening files 6-58
overview 6-52
reading data 6-61
reading data set metadata 6-60
reading data sets 6-60
reading global attributes 6-59
reading metadata 6-59
selecting data sets to import 6-66
specifying file access modes 6-58
using hdfinfo to import metadata 6-53
using high-level functions

overview 6-52
using predefined attributes 6-89
using the HDF Import Tool 6-63
writing data 6-82 6-86
writing metadata 6-88
See also HDF5

HDF5 6-32
exporting data in HDF5 format 6-40
low-level functions

mapping HDF5 data types to MATLAB
data types 6-45

mapping HDF5 syntax to MATLAB
syntax 6-42

reading and writing data 6-47
overview 6-32
using hdf5info to read metadata 6-33
using hdf5read to import data 6-36
using high-level functions 6-32
using low-level functions 6-41
See also HDF4

Hierarchical Data Format. See HDF4. See HDF5
hyperlinks

Command Window 10-10

I
Import Data option 1-9
Import Wizard

importing binary data 1-9
importing

ASCII data 2-2
HDF4 data 6-52

from the command line 6-56
selecting HDF4 data sets 6-66
subsets of HDF4 data 6-67

Internet functions 10-1

L
large data sets

reading 2-16
links

Command Window 10-10

M
mapping memory. See memory mapping
memory mapping

demonstration 9-39
memmapfile class

class constructor 9-10
class properties 9-7

Index-3

Index

defined 9-7
Filename property 9-13
Format property 9-14
Offset property 9-14
Repeat property 9-21
supported formats 9-20
Writable property 9-22

overview 9-2
benefits of 9-2
byte ordering 9-6
when to use 9-4

reading from file 9-24
removing map 9-38
selecting file to map 9-13
setting access privileges 9-22
setting extent of map 9-21
setting start of map 9-14
specifying classes in file 9-14
supported classes 9-20
writing to file 9-30

N
NetCDF

mapping NetCDF syntax to MATLAB
syntax 6-15

MATLAB support 6-12
reading data 6-12 6-16
reading OPeNDAP data 6-20

Network Common Data Form
see NetCDF 6-12

O
opening

files
HDF4 files 6-58
permissions 4-22 4-27

P
Paste Special option 1-7
permission strings 4-22 4-27
precision

classes 4-13

R
reading

HDF4 data 6-52
from the command line 6-56

selecting HDF4 data sets 6-66
subsets of HDF4 data 6-67

T
tempdir 1-25
tempname 1-25
temporary files

creating 1-25
text files

reading 2-2

V
value

class 4-13

W
Web content access 10-2
writing

ASCII data 2-19
HDF4 data 6-86
in HDF4 format 6-82
in HDF5 format 6-40

Index-4

	toc
	File Opening, Loading, and Saving
	Supported File Formats
	Recommended Methods for Importing Data
	Tools that Import Multiple File Formats
	Importing Specific File Formats
	Importing Data in Other Formats
	Finding Files
	Tips for Using the Import Wizard
	Viewing the Contents of a File
	Specifying Variables
	Generating Reusable MATLAB Code

	Process a Sequence of Files
	View the Contents of a MAT-File
	Load Parts of Variables from MAT-Files
	Load Using the matfile Function
	Avoid Inadvertently Loading Entire Variables
	Partial Loading Requires Version 7.3 MAT-Files

	Save Parts of Variables to MAT-Files
	Save Using the matfile Function
	Partial Saving Requires Version 7.3 MAT-Files

	Save Structure Fields as Separate Variables
	MAT-File Versions
	Default Version
	Overriding the Default MAT-File Version
	Speeding Up Save and Load Operations

	Troubleshooting: Loading Variables within a Function
	Creating Temporary Files

	Text Files
	Ways to Import Text Files
	Select Text File Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Text Files

	Import Formatted Dates and Times from Text Files
	Import Numeric Data from Text Files
	Import Text Files with Numeric Fields
	Select a Range of Numeric Data

	Import Numeric Data and Header Text from Text Files
	Import Mixed Text and Numeric Data from Text Files
	Open the File
	Describe Your Data
	Import into a Cell Array

	Import Large Text Files
	Import Data from a Nonrectangular Text File
	Ways to Write to Text Files
	Write to Delimited Data Files
	Overview
	Exporting a Numeric Array to an ASCII File Using save
	Exporting a Numeric Array to an ASCII File Using dlmwrite
	Exporting a Cell Array to a Text File

	Write to a Diary File

	Spreadsheets
	Ways to Import Spreadsheets
	Select Spreadsheet Data Using Import Tool
	Select Data Interactively
	Import Data from Multiple Spreadsheets

	Import a Worksheet or Range with xlsread
	Reading from a Spreadsheet
	Getting Information about a Spreadsheet

	Import All Worksheets in a File with importdata
	System Requirements for Importing Spreadsheets
	Importing Spreadsheets with Excel for Windows
	Importing Spreadsheets Without Excel for Windows

	When to Convert Dates from Excel Files
	MATLAB and Excel Dates
	Example — Importing an Excel File with Numeric Dates

	Export to Excel Spreadsheets
	Writing to a Spreadsheet File
	Adding a New Worksheet
	File Formats that xlswrite Supports
	Converting Dates
	Example — Exporting to an Excel File with Numeric Dates

	Formatting Cells in Excel Files

	Low-Level File I/O
	Import Text Data Files with Low-Level I/O
	Overview
	Reading Data in a Formatted Pattern
	Opening the File
	Describing the Data
	Specifying the Number of Values to Read
	Creating Variables in the Workspace

	Reading Data Line-by-Line
	Testing for End of File (EOF)
	Testing for EOF with feof
	Testing for EOF with fgetl and fgets

	Opening Files with Different Character Encodings

	Import Binary Data with Low-Level I/O
	Low-Level Functions for Importing Data
	Reading Binary Data in a File
	Changing the Dimensions of the Array
	Describing the Input Values
	Saving Memory

	Reading Portions of a File
	Testing for End of File
	Moving within a File

	Reading Files Created on Other Systems
	Opening Files with Different Character Encodings

	Export to Text Data Files with Low-Level I/O
	Writing to Text Files
	Opening the File
	Describing the Output
	Additional Formatting Options

	Appending or Overwriting Existing Files
	Example — Append to an Existing Text File
	Example — Overwrite an Existing Text File

	Opening Files with Different Character Encodings

	Export Binary Data with Low-Level I/O
	Low-Level Functions for Exporting Data
	Writing Binary Data to a File
	Overwriting or Appending to an Existing File
	Example — Overwriting Binary Data in an Existing File
	Example — Appending Binary Data to an Existing File

	Creating a File for Use on a Different System
	Opening Files with Different Character Encodings
	Writing and Reading Complex Numbers

	Images
	Importing Images
	Getting Information about Image Files
	Reading Image Data and Metadata from TIFF Files
	Reading Subimages from a TIFF File

	Exporting to Images
	Exporting Image Data and Metadata to TIFF Files
	Creating a New TIFF File
	Writing a Strip or Tile of Image Data
	Modifying TIFF File Metadata (Tags)
	Creating Subdirectories in a TIFF File
	Setting Tag Values

	Scientific Data
	Importing Common Data File Format (CDF) Files
	Overview
	High-Level CDF Import Functions
	Getting Information about the Contents of CDF File
	Reading Data from a CDF File
	Speeding Up Read Operations
	Representing CDF Time Values

	Using the CDF Library Low-Level Functions to Import Data

	Exporting to Common Data File Format (CDF) Files
	Importing Network Common Data Form (NetCDF) Files and OPeNDAP Da
	Overview
	Using the MATLAB High-Level NetCDF Functions to Import Data
	Finding All Unlimited Dimensions in a NetCDF File

	Using the MATLAB Low-Level NetCDF Functions to Import Data
	Mapping NetCDF API Syntax to MATLAB Function Syntax
	Exploring the Contents of a NetCDF File
	Reading Data from a NetCDF File

	Troubleshooting OPeNDAP Connections

	Exporting to Network Common Data Form (NetCDF) Files
	Overview
	Using the NetCDF High-Level Functions to Export Data
	Creating a New NetCDF File from an Existing File or Template
	Converting Between NetCDF File Formats
	Merging Two NetCDF Files

	Using the NetCDF Low-Level Functions to Export Data
	Exporting (Writing) Data to a NetCDF File

	Importing Flexible Image Transport System (FITS) Files
	Importing Hierarchical Data Format (HDF5) Files
	Overview
	Using the High-Level HDF5 Functions to Import Data
	Determining the Contents of an HDF5 File
	Importing Data from an HDF5 File
	Mapping HDF5 Datatypes to MATLAB Datatypes

	Using the Low-Level HDF5 Functions to Import Data

	Exporting to Hierarchical Data Format (HDF5) Files
	Overview
	Using the MATLAB High-Level HDF5 Functions to Export Data
	Writing a Numeric Array to an HDF5 Dataset

	Using the MATLAB Low-Level HDF5 Functions to Export Data
	Mapping HDF5 Function Syntax to MATLAB Function Syntax
	Mapping Between HDF5 Data Types and MATLAB Data Types
	Reporting Data Set Dimensions
	Writing Data to an HDF5 Data Set Using the MATLAB Low-Level Func
	Preserving the Correct Layout of Your Data

	Importing Hierarchical Data Format (HDF4) Files
	Overview
	Using the MATLAB HDF4 High-Level Functions
	Using hdfinfo to Get Information About an HDF4 File
	Using hdfread to Import Data from an HDF4 File

	Using the HDF4 Low-Level Functions
	Mapping HDF4 to MATLAB Syntax
	Step 1: Opening the HDF4 File
	Step 2: Retrieving Information About the HDF4 File
	Step 3: Retrieving Attributes from an HDF4 File (Optional)
	Step 4: Selecting the Data Sets to Import
	Step 5: Getting Information About a Data Set
	Step 6: Reading Data from the HDF4 File
	Step 7: Closing the HDF4 Data Set
	Step 8: Closing the HDF4 File

	Using the HDF Import Tool
	Step 1: Opening an HDF4 File in the HDF Import Tool
	Step 2: Selecting a Data Set in an HDF File
	Step 3: Specifying a Subset of the Data (Optional)
	Step 4: Importing Data and Metadata
	Step 5: Closing HDF Files and the HDF Import Tool

	Using the HDF Import Tool Subsetting Options
	HDF Scientific Data Sets (SD)
	HDF Vdata
	HDF-EOS Grid Data
	Pixels. You can import a subset of the pixels in a Grid data se

	HDF-EOS Point Data
	HDF-EOS Swath Data
	User-Defined. You can optionally also subset a swath data set b

	HDF Raster Image Data

	Exporting to Hierarchical Data Format (HDF4) Files
	Overview
	Mapping HDF4 to MATLAB Syntax
	Step 1: Creating an HDF4 File
	Step 2: Creating an HDF4 Data Set
	Step 3: Writing MATLAB Data to an HDF4 File
	Step 4: Writing Metadata to an HDF4 File
	Step 5: Closing HDF4 Data Sets
	Step 6: Closing an HDF4 File
	Using the MATLAB HDF4 Utility API
	Closing All Open HDF4 Identifiers

	Audio and Video
	Read and Get Information About Audio Files
	Record and Play Audio
	Record Audio
	Specifying the Quality of the Recording

	Play Audio
	Recording or Playing Audio within a Function

	Get Information about Video Files
	Read Video Files
	Importing Video Data from a File
	Processing Frames of a Video File
	Reading Variable Frame Rate Video
	Counting Frames
	Specifying the Frames to Read

	Supported Video File Formats

	Convert Between Image Sequences and Video
	Setup
	Construct a VideoReader Object
	Create the Image Sequence
	Read and Sort the Image Sequence into MATLAB
	Create a New Video with the Image Sequence
	View the Final Video
	Credits
	Export to Audio and Video
	Exporting to Audio Files
	Exporting Video to AVI Files

	Characteristics of Audio Files

	XML Documents
	Importing XML Documents
	What Is an XML Document Object Model (DOM)?
	Example — Finding Text in an XML File

	Exporting to XML Documents
	Creating an XML File
	Example — Creating an XML File with xmlwrite

	Updating an Existing XML File

	Memory-Mapping Data Files
	Overview of Memory-Mapping
	What Is Memory-Mapping?
	Benefits of Memory-Mapping
	Faster File Access
	Efficiency
	Efficient Coding Style
	Sharing Memory Between Applications

	When to Use Memory-Mapping
	When Memory-Mapping Is Most Useful
	When the Advantage Is Less Significant

	Maximum Size of a Memory Map
	Byte Ordering

	The memmapfile Class
	Setting Properties
	Viewing Properties

	Constructing a memmapfile Object
	How to Run Examples in This Section
	Constructing the Object with Default Property Values
	Changing Property Values
	Selecting the File to Map
	Setting the Start of the Mapped Region
	Identifying the Contents of the Mapped Region
	Mapping a Single Data Type
	Formatting the Mapped Data to an Array
	Mapping Multiple Data Types and Arrays

	Mapping of the Example File
	Supported Data Types for the Format Property

	Repeating a Format Scheme
	Keeping the Repeated Format Within the Mapped Region

	Setting the Type of Access

	Reading a Mapped File
	Introduction
	Improving Performance
	Example 1 — Reading a Single Data Type
	Example 2 — Formatting File Data as a Matrix
	Example 3 — Reading Multiple Data Types
	Example 4 — Modifying Map Parameters

	Writing to a Mapped File
	Example — Writing to a Mapped File
	Dimensions of the Data Field
	Examples of Invalid Syntax

	Writing Matrices to a Mapped File
	When Memory Is Mapped in Nonstructure Format
	When Memory Is Mapped in Scalar Structure Format
	When Memory Is Mapped in Nonscalar Structure Format

	Selecting Appropriate Data Types
	Working with Copies of the Mapped Data

	Deleting a Memory Map
	Ways to Delete a Memory Map
	The Effect of Shared Data Copies On Performance

	Share Memory Between Applications
	Introduction
	The send Function
	The answer Function
	Running the Example

	Internet File Access
	Downloading Web Content and Files
	Example — Using the urlread Function
	Example — Using the urlwrite Function

	Creating and Decompressing Zip Archives
	Example — Using the zip Function

	Sending Email
	Example — Using the sendmail Function

	Performing FTP File Operations
	Example — Retrieving a File from an FTP Server

	Display Hyperlinks in the Command Window
	Creating Hyperlinks to Web Pages
	Transferring Files Using FTP

	Index

	tables
	Table 1: Supported TIFF Tags
	Table 2: Valid SampleFormat Values for BitsPerSample Settings
	Table 3: Valid SampleFormat Values for BitsPerSample and Photome
	Table 4: Valid SampleFormat Values for BitsPerSample and Compres
	Table 5: Valid SamplesPerPixel Values for Photometric Settings
	Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
	Mapping Between HDF5 Composite Data Types and MATLAB Data Types

